1
|
Ghaemi Z, Noshadi M. Evaluation of fluoride exposure using disability-adjusted life years and health risk assessment in south-western Iran: A novel Monte Carlo simulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116705. [PMID: 39003868 DOI: 10.1016/j.ecoenv.2024.116705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/08/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024]
Abstract
Consumption of fluoride-contaminated water is a worldwide concern, especially in developing countries, including Iran. However, there are restricted studies of non-single-value health risk assessment and the disease burden regarding fluoride intake nationwide. Prolonged exposure to excessive fluoride has been linked to adverse health effects such as dental and skeletal fluorosis. This can lead to under-mineralization of hard tissues, causing aesthetic concerns for teeth and changes in bone structure, increasing the risk of fractures. As such, we aimed to implement probability-based frameworks using Monte Carlo methods to explore the potential adverse effects of fluoride via the ingestion route. This platform consists of two sectors: 1) health risk assessment of various age categories coupled with a variance decomposition technique to measure the contributions of predictor variables in the outcome of the health risk model, and 2) implementing Monte Carlo methods in dose-response curves to explore the fluoride-induced burden of diseases of dental fluorosis and skeletal fractures in terms of disability-adjusted life years (DALYs). For this purpose, total water samples of 8053 (N=8053) from 57 sites were analyzed in Fars and Bushehr Provinces. The mean fluoride concentrations were 0.75 mg/L and 1.09 mg/L, with maximum fluoride contents of 6.5 mg/L and 3.22 mg/L for the Fars and Bushehr provinces, respectively. The hazard quotient of the 95th percentile (HQ>1) revealed that all infants and children in the study area were potentially vulnerable to over-receiving fluoride. Sobol' sensitivity analysis indices, including first-order, second-order, and total order, disclosed that fluoride concentration (Cw), ingestion rate (IRw), and their mutual interactions were the most influential factors in the health risk model. DALYs rate of dental fluorosis was as high as 981.45 (uncertainty interval: UI 95 % 353.23-1618.40) in Lamerd, and maximum DALYs of skeletal fractures occurred in Mohr 71.61(49.75-92.71), in Fars Province, indicated severe dental fluorosis but mild hazard regarding fractures. Residents of the Tang-e Eram in Bushehr Province with a DALYs rate of 3609.40 (1296.68-5993.73) for dental fluorosis and a DALYs rate of 284.67 (199.11-367.99) for skeletal fractures were the most potentially endangered population. By evaluating the outputs of the DALYs model, the gap in scenarios of central tendency exposure and reasonable maximum exposure highlights the role of food source intake in over-receiving fluoride. This research insists on implementing defluoridation programs in fluoride-endemic zones to combat the undesirable effects of fluoride. The global measures presented in this research aim to address the root causes of contamination and help policymakers and authorities mitigate fluoride's harmful impacts on the environment and public health.
Collapse
Affiliation(s)
- Zeynab Ghaemi
- Department of Water Engineering, Shiraz University, Shiraz, Iran.
| | - Masoud Noshadi
- Department of Water Engineering, Shiraz University, Shiraz, Iran.
| |
Collapse
|
2
|
Ning W, Hu Y, Feng S, Cao M, Luo J. Ecological risk assessment and transmission of soil heavy metals in pastoral areas of the Tibetan plateau based on network environment analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167197. [PMID: 37741383 DOI: 10.1016/j.scitotenv.2023.167197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/16/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023]
Abstract
The Qinghai-Tibet Plateau is distinguished by its diverse ecosystems and biodiversity, which are highly dependent on their soil. In this study, a comprehensive analysis was conducted to assess the ecological risks in Maqin County, located on the Qinghai-Tibet Plateau, along with the local background values of soil elements, level of element enrichment, and source appointment of soil elements. The findings show that the background soil element levels in Maqin County were greater than the average soil content values in China. The soils in the study area exhibited pollution levels ranging from weak to moderate. The positive matrix factorization (PMF) model was employed to successfully categorized soil elements into four sources: F1 (natural sources), F2 (grazing sources), F3 (volcanic and rock fracture sources), and F4 (intrusive and deep rock source). Based on the characteristics of the ecological communities and the network environmental analysis model, ecological risks were directly introduced through vegetation and soil microorganisms, with subsequent transmission to other components of the ecosystem through the food chain. The integrated risks associated with vegetation, herbivores, soil microorganisms, and carnivores were 0.0106, 0.00193, 0.0282, and 0.00132, respectively. Notably, soil microorganisms were found to be the primary contributors to the total ecological risk in the study area. Furthermore, network environmental analysis and human health risk models revealed that F1, F2, F3, and F4 accounted for 16.85 %, 8.90 %, 21.76 %, and 52.49 % of the input risk of vegetation and soil microorganisms, respectively. Particularly, F4 emerged as the largest contributor to human health risks. This study provides valuable information for the preservation of the ecological environment in pastoral areas, contributing to the global promotion of sustainable ecological practices.
Collapse
Affiliation(s)
- Wenjing Ning
- School of Environment, Nanjing University, Nanjing, China.
| | - Yuwei Hu
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Siyao Feng
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Min Cao
- University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China.
| |
Collapse
|
3
|
Liu X, Chi H, Tan Z, Yang X, Sun Y, Li Z, Hu K, Hao F, Liu Y, Yang S, Deng Q, Wen X. Heavy metals distribution characteristics, source analysis, and risk evaluation of soils around mines, quarries, and other special areas in a region of northwestern Yunnan, China. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132050. [PMID: 37459760 DOI: 10.1016/j.jhazmat.2023.132050] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
In this study, based on the assessment of soil heavy metals (HMs) pollution using relevant indices, a comprehensive approach combined network environ analysis (NEA), human health risk assessment (HHRA) method and positive definite matrix factor (PMF) model to quantify the risks among ecological communities in a special environment around mining area in northwest Yunnan, calculated the risk to human health caused by HMs in soil, and analyzed the pollution sources of HMs. The integrated risks for soil microorganisms, vegetations, herbivores, and carnivores were 2.336, 0.876, 0.114, and 0.082, respectively, indicating that soil microorganisms were the largest risk receptors. The total hazard indexes (HIT) for males, females, and children were 0.542, 0.591, and 1.970, respectively, revealing a relatively high and non-negligible non-carcinogenic risks (NCR) for children. The total cancer risks (TCR) for both females and children exceeded 1.00E-04, indicating that soil HMs posed carcinogenic risks (CR) to them. Comparatively, Pb was the high-risk metal, accounting for 53.76%, 57.90%, and 68.09% of HIT in males, females, and children, respectively. PMF analysis yielded five sources of pollution, F1 (industry), F2 (agriculture), F3 (domesticity), F4 (nature), and F5 (traffic).
Collapse
Affiliation(s)
- Xin Liu
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Huajian Chi
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Zhiqiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaofang Yang
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yiping Sun
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Zongtao Li
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Kan Hu
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Fangfang Hao
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Yong Liu
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Shengchun Yang
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Qingwen Deng
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China.
| | - Xiaodong Wen
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China.
| |
Collapse
|
4
|
Qin J, Jiang X, Yan Z, Zhao H, Zhao P, Yao Y, Chen X. Heavy metal content and microbial characteristics of soil plant system in Dabaoshan mining area, Guangdong Province. PLoS One 2023; 18:e0285425. [PMID: 37294818 PMCID: PMC10256142 DOI: 10.1371/journal.pone.0285425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/21/2023] [Indexed: 06/11/2023] Open
Abstract
The disordered mining of Dabaoshan lead-zinc mineral resources in Shaoguan has brought serious harm to the regional ecological environment. In order to investigate the heavy metal pollution status and microbial characteristics of soil plant system in mining area, The distribution of heavy metals in the soil, the activity of soil microorganisms and the accumulation characteristics of heavy metals in the dominant plant Miscanthus floridulus were studied. The results indicated that metal element contents of Miscanthus floridulus in sequence were: Zn>Pb>Cu> Cd. This study demonstrated that the elemental content of the Miscanthus floridulus plant showed Zn>Pb>Cu>Cd, with Zn being the most significantly correlated with soil elements, followed by Pb. Compared with the control group, the Miscanthus floridulus-soil system possessed obviously different soil microbial features: intensiver in microbial basal respiration strength, and higher microbial eco-physiological parameters Cmic/Corg and qCO2, but lower in soil microbial biomass. The results showed the soil enzymatic activities decreased significantly with increase of contamination of heavy metals, especially dehydrogenase and urease activities. With the increase of the content of heavy metals in the mining area soil, the intensity of soil biochemical action in the mining area (Q1, Q2) soil decreased significantly, and the biochemical action showed a significant negative correlation with the content of heavy metals in the soil. Compared with the non mining area (Q8) soil, the intensity of soil ammonification, nitrification, N fixation and cellulose decomposition decreased by 43.2%~71.1%, 70.1%~92.1%, 58.7%~87.8% and 55.3%~79.8% respectively. The decrease of soil microbial activity weakened the circulation rate and energy flow of C and N nutrients in the soil of the mining area.
Collapse
Affiliation(s)
- Jianqiao Qin
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, China
| | - Xueding Jiang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | | | - Huarong Zhao
- School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Peng Zhao
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Guangzhou, 510655, China
| | - Yibo Yao
- Guangdong Provincial Academy of Environmental Scienc, Guangzhou, 510045, China
| | - Xi Chen
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| |
Collapse
|