1
|
Javadian S, Ramezani A, Sadrpoor SM, Saeedi Dehaghani AH. The effect of chemical bond and solvent solubility parameter on stability and absorption value of functionalized PU sponge. CHEMOSPHERE 2023; 340:139936. [PMID: 37619755 DOI: 10.1016/j.chemosphere.2023.139936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
Seawater pollution from various sources such as industrial effluents, ship washing at sea, and oil spills harm humans and the marine environment. Therefore, finding ways to eliminate this pollution is crucial. This study successfully modified a polyurethane sponge through a simple dip-coating method with functionalized graphene oxide incorporating octadecylamine and oleic acid, resulting in a hydrophobic sponge capable of absorbing crude oil and various organic solvents. Characterization analyses confirmed the synthesis. The absorption capacity of the modified sponges was examined, for example, the PU sponge has absorbed 4 g/g engine oil, while the modified GO-ODA-PU sponge has increased its absorption to 36 g/g. The GO-ODA-PU sponge demonstrated great reusability compared to the GO-OA-PU sponge owing to the strong covalent bond formed between GO and ODA, which is superior to the weak hydrogen bond formed between GO and OA. The absorption capacity of the GO-OA-PU sponge decreased by 30%. The contact angle test showed that GO-ODA-PU and GO-OA-PU sponges had contact angles of 131° and 115°, respectively. Additionally, the GO-ODA-PU sponge performed optimally for semi-polar solvents in the solubility parameter range of 18-19, with its absorption capacity reaching its maximum value. The amount of oil recycling is even possible up to 98%.
Collapse
Affiliation(s)
- Soheila Javadian
- Department of Physical Chemistry, Faculty of Basic Science, Tarbiat Modares University, Tehran, Iran.
| | - Anita Ramezani
- Department of Physical Chemistry, Faculty of Basic Science, Tarbiat Modares University, Tehran, Iran
| | - S Morteza Sadrpoor
- Department of Physical Chemistry, Faculty of Basic Science, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
2
|
Shehata FA, El-Kalliny AS, Attia MS, Gad-Allah TA. SiO 2/Zn 0.4Co 0.6Fe 2O 4 aerogel: an efficient and reusable superparamagnetic adsorbent for oily water remediation. RSC Adv 2023; 13:23421-23430. [PMID: 37546219 PMCID: PMC10402872 DOI: 10.1039/d3ra03570k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/22/2023] [Indexed: 08/08/2023] Open
Abstract
Magnetic SiO2/Zn0.4Co0.6Fe2O4 aerogels were successfully prepared by sol-gel method with two different drying steps: ambient pressure drying (APD) and freeze-drying (FD). The surface chemistry of silica was modified to be hydrophobic by oleic acid. The prepared materials were fully characterized, displaying superparamagnetic behavior with saturation magnetizations of 10.2 and 15.1 emu g-1, and contact angles of ∼130° and ∼140° for the materials prepared by the APD and FD methods, respectively, indicating the hydrophobic surfaces of the prepared materials. This hydrophobicity allows the efficient separation of oil. Specifically, as high as 1.7 and 2 g g-1 adsorption capacities were obtained when using APD-dried and FD-dried silica aerogels, respectively, suggesting the preference for the FD method. Additionally, magnetic recovery and reuse of the adsorbents were successfully implemented in an attempt to reduce the overall practical application costs. To sum up, the prepared materials are good candidates for oil removal from wastewater and the protection of the environment.
Collapse
Affiliation(s)
- Fagr A Shehata
- Water Pollution Research Department, National Research Centre 33 El Buhouth St., Dokki 12622 Giza Egypt +201012431344
| | - Amer S El-Kalliny
- Water Pollution Research Department, National Research Centre 33 El Buhouth St., Dokki 12622 Giza Egypt +201012431344
| | - Mohamed S Attia
- Chemistry Department, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt
| | - Tarek A Gad-Allah
- Water Pollution Research Department, National Research Centre 33 El Buhouth St., Dokki 12622 Giza Egypt +201012431344
| |
Collapse
|
3
|
Gao Y, Fang Z, Lin W, Chen H, Bhatnagar A, Li J, Xie Y, Bao Y, Chen J, Zhao H, Meng J, Chen W, Wang H. Large-flake graphene-modified biochar for the removal of bisphenol S from water: rapid oxygen escape mechanism for synthesis and improved adsorption performance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120847. [PMID: 36496064 DOI: 10.1016/j.envpol.2022.120847] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The combined effects of graphene and biochar for enhanced adsorption of organic pollutants have not been demonstrated yet. Therefore, the mechanisms of graphene-modified biochar synthesis and its application to adsorption of contaminants remain unclear. In this study, the effect of flake-size graphene on biochar modification and its bisphenol S (BPS) adsorption performance was explored for the first time. Three sizes of graphene oxide were used as the precursor to prepare graphene/biochar composites using pyrolysis. It was found that the graphene with a small flake size was interspersed in the macropores of biochar, while the biochar was completely or mostly wrapped by the large-sized graphene sheet, which effectively prevented the agglomeration and pore blockage of biochar. Large-flake graphene oxide modified biochar (LGB) showed the highest adsorption capacity towards BPS, exhibiting 2.8 times higher adsorption than pristine biochar. Density functional theory (DFT) calculation suggested that the maximum diffusion barrier of O atoms in graphene coated cellulose (most frequently used biochar representative) could be reduced significantly (∼46%) at pyrolysis temperature of 873 K. Taking the advantage of small amount of graphene and enhanced adsorption performance, LGB could be a promising adsorbent for the removal of certain organic pollutants from wastewater and is conducive for the development of high-valued biochar modification.
Collapse
Affiliation(s)
- Yurong Gao
- Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China; Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, China
| | - Zheng Fang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Wenhui Lin
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Hanbo Chen
- Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China; Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, China
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Jianhong Li
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yanhai Xie
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Yanping Bao
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Junfeng Chen
- School of Life Science, Qufu Normal University, Qufu, 273165, China
| | - Hongting Zhao
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Jun Meng
- Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, China
| | - Wenfu Chen
- Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Guangdong Green Technologies Co., Ltd., Foshan, 528100, China.
| |
Collapse
|
4
|
Manuel Martínez-Rubio P, Dolores Avilés M, Arias-Pardilla J, José Carrión-Vilches F, Sanes J, Dolores Bermúdez M, Pamies R. Physicochemical characterisation of graphene-ammonium lactate ionic liquid nanofluid. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Chen Y, Zhong C, Wu J, Ma J, Yu X, Liu Y. One-Step Synthesis of 3D Pore-Structured Adsorbent by Cross-Linked PEI and Graphene Oxide Sheets and Its Application in CO 2 Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14192-14199. [PMID: 36355438 DOI: 10.1021/acs.langmuir.2c02205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, a one-step method of polyethylenimine (PEI) cross-linking graphene oxide (GO) was used to prepare a 3D pore-structured adsorbent with abundant amine groups for chemisorption of CO2. The cross-linking of PEI with GO sheets and the vacuum freeze-drying step are the keys to the formation of the 3D pore structure. The results of characterization analysis revealed that the as-prepared adsorbent had a 3D porous structure rich in amine groups. Besides, the adsorption/desorption test showed that the prepared adsorbent has excellent and stable adsorption performance, and the maximum CO2 adsorption capacity is 2.18 mmol/g at 343 K and 10 vol % CO2. Moreover, the adsorption kinetics analysis indicated that the adsorption process was dominated by homogeneous adsorption, and the adsorbent had a strong affinity with CO2. Finally, the correlation analysis shows that the kinetic constants obtained by the Avrami model simulation can be effectively used for the actual CO2 adsorption process design.
Collapse
Affiliation(s)
- Yilan Chen
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou350118, FujianChina
- Fuzhou Smart Environmental Industry Technology Innovation Center, Fuzhou350118, FujianChina
| | - Chaoteng Zhong
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou350118, FujianChina
| | - Junjie Wu
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou350118, FujianChina
| | - Jianfei Ma
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou350118, FujianChina
| | - Xiaojing Yu
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou350118, FujianChina
| | - Yamin Liu
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou350118, FujianChina
- Fuzhou Smart Environmental Industry Technology Innovation Center, Fuzhou350118, FujianChina
| |
Collapse
|
6
|
Hsu HL, Yang CC, Chiu WC, Hou SS, Lin CY, Lin CL. Kinetic model, recycling, regeneration, and reusing of tri-phase catalytic nucleophilic substitution esterification. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|