1
|
Kamranifar M, Ghanbari S, Fatehizadeh A, Taheri E, Azizollahi N, Momeni Z, Khiadani M, Ebrahimpour K, Ganachari SV, Aminabhavi TM. Unique effect of bromide ion on intensification of advanced oxidation processes for pollutants removal: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 354:124136. [PMID: 38734054 DOI: 10.1016/j.envpol.2024.124136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Advanced oxidation processes (AOPs) have been developed to decompose toxic pollutants to protect the aquatic environment. AOP has been considered an alternative treatment method for wastewater treatment. Bromine is present in natural waters posing toxic effects on human health and hence, its removal from drinking water sources is necessary. Of the many techniques advanced oxidation is covered in this review. This review systematically examines literature published from 1997 to April 2024, sourced from Scopus, PubMed, Science Direct, and Web of Science databases, focusing on the efficacy of AOPs for pollutant removal from aqueous solutions containing bromide ions to investigate the impact of bromide ions on AOPs. Data and information extracted from each article eligible for inclusion in the review include the type of AOP, type of pollutants, and removal efficiency of AOP under the presence and absence of bromide ion. Of the 1784 documents screened, 90 studies met inclusion criteria, providing insights into various AOPs, including UV/chlorine, UV/PS, UV/H2O2, UV/catalyst, and visible light/catalyst processes. The observed impact of bromide ion presence on the efficacy of AOP processes, alongside the AOP method under scrutiny, is contingent upon various factors such as the nature of the target pollutant, catalyst type, and bromide ion concentration. These considerations are crucial in selecting the best method for removing specific pollutants under defined conditions. Challenges were encountered during result analysis included variations in experimental setups, disparities in pollutant types and concentrations, and inconsistencies in reporting AOP performance metrics. Addressing these parameters in research reports will enhance the coherence and utility of subsequent systematic reviews.
Collapse
Affiliation(s)
- Mohammad Kamranifar
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sobhan Ghanbari
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ensiyeh Taheri
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Nastaran Azizollahi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Momeni
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Karim Ebrahimpour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sharanabasava V Ganachari
- Center for Energy and Environment,School of Advanced Sciences, KLE Technological University, Hubballi-580031, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment,School of Advanced Sciences, KLE Technological University, Hubballi-580031, India; University Center for Research & Development (UCRD), Chandigarh University, Mohali, Punjab 140 413, India; Korea University, Seoul, South Korea
| |
Collapse
|
2
|
Wang Z, Meng L, Luo T. Electrochemical-enhanced nanoscale oxygen-vacancy CuFe 2O 4 to activate persulfate (E/oxygen-vacancy CuFe 2O 4/PS) for separation of Ebselen from wastewater. ENVIRONMENTAL TECHNOLOGY 2024; 45:2144-2155. [PMID: 36599035 DOI: 10.1080/09593330.2023.2165456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
To enhance the catalytic activity of CuFe2O4 on PS, a nanoscale oxygen-vacancy CuFe2O4 was prepared by hydrogenation reduction technique to construct an advanced oxidation system of electrochemical-enhanced nanoscale oxygen-vacancy CuFe2O4-activated persulfate. Using Ebselen (EBS) as a model pollutant, the degradation efficiency, activation mechanism and degradation pathway were studied. The oxygen-vacancy CuFe2O4 was characterized and analysed by FESEM, EDS and XPS. The results show that under the optimal reaction conditions (PS = 0.8 g/L, oxygen-vacancy CuFe2O4 = 0.3 g/L, initial pH = 6.5), the removal rate of 20 mg/L EBS can reach 92% after reaction for 60 min, which proves that the formation of oxygen-vacancy changed the catalytic inertness of CuFe2O4 on PS. It is speculated that in the E/oxygen-vacancy CuFe2O4/PS system, the existence of oxygen holes enhances the electron transfer ability and reducibility of the catalyst, so the oxygen-vacancy CuFe2O4 can efficiently activate PS to degrade EBS. The quenching experiments show that both SO 4 ⋅ - and ⋅ OH are involved in the oxidation reaction as reactive radicals in the system, with SO 4 ⋅ - being the main reactive radical. In addition, both dissolved oxygen (DO) and anions in the solution inhibit the oxidative degradation of EBS by oxygen-vacancy CuFe2O4/PS system. Through GC-MS detection, a possible degradation pathway is proposed.
Collapse
Affiliation(s)
- Zhenjun Wang
- College of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Liang Meng
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, People's Republic of China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, People's Republic of China
- Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, People's Republic of China
| | - Tianlie Luo
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, People's Republic of China
| |
Collapse
|
3
|
Zheng Y, Xiao Z, Lin Y, Fang Z, Liu D, Lin Z, Zhang Q, Chen P, Zhang Z, Xv L, Lv W, Liu G. Degradation of sulfonamide antibiotic via UV/MgO 2 system: kinetic, application, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14239-14253. [PMID: 38273083 DOI: 10.1007/s11356-024-32079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
In response to antibiotic residues in the water, a novel advanced oxidation technology based on MgO2 was used to remediate sulfamethazine (SMTZ) pollution in aquatic environments. Upon appropriate regulation, the remarkable removal efficiency of SMTZ was observed in a UV/MgO2 system, and the pseudo-first-order reaction constant reached 0.4074 min-1. In addition, the better performance of the UV/MgO2 system in a weak acid environment was discovered. During the removal of SMTZ, the pathways of SMTZ degradation were deduced, including nitration, ring opening, and group loss. In the mineralization exploration, the further removal of residual products of SMTZ by the UV/MgO2 system was visually demonstrated. The qualitative and quantitative researches as well as the roles of reactive species were valuated, which revealed the important role of ·O2-. Common co-existing substances in actual wastewater such as NO3- HA, Cl-, Fe2+, Co2+, and Mn2+ can slightly inhibit the degradation of SMTZ in the UV/MgO2 system. Finally, the capacity of efficient degradation of SMTZ in actual wastewater by the UV/MgO2 system was proved. The results indicated that the innovative UV/MgO2 system was of great practical application prospect in antibiotic residue wastewater remediation.
Collapse
Affiliation(s)
- Yixun Zheng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhenjun Xiao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yijie Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zheng Fang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Deyang Liu
- School of Foreign Languages, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zifeng Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qianxin Zhang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Ping Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Zhenheng Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Lu Xv
- School of Art & Design, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wenying Lv
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guoguang Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
4
|
Samadi MT, Rezaie A, Ebrahimi AA, Hossein Panahi A, Kargarian K, Abdipour H. The utility of ultraviolet beam in advanced oxidation-reduction processes: a review on the mechanism of processes and possible production free radicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6628-6648. [PMID: 38153574 DOI: 10.1007/s11356-023-31572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Advanced oxidation processes (AOPs) and advanced reduction processes (ARPs) are a set of chemical treatment procedures designed to eliminate organic (sometimes inorganic) contamination in water and wastewater by producing free reactive radicals (FRR). UV irradiation is one of the factors that are effectively used in oxidation-reduction processes. Not only does the UV beam cause the photolysis of contamination, but it also leads to the product of FRR by affecting oxidants-reductant, and the pollutant decomposition occurs by FRR. UV rays produce active radical species indirectly in an advanced redox process by affecting an oxidant (O3, H2O2), persulfate (PS), or reducer (dithionite, sulfite, sulfide, iodide, ferrous). Produced FRR with high redox potential (including oxidized or reduced radicals) causes detoxification and degradation of target contaminants by attacking them. In this review, it was found that ultraviolet radiation is one of the important and practical parameters in redox processes, which can be used to control a wide range of impurities.
Collapse
Affiliation(s)
- Mohammad Taghi Samadi
- Research Center for Health Sciences, Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arezo Rezaie
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Asghar Ebrahimi
- Environmental Science and Technology Research Center, Department of Environmental Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ayat Hossein Panahi
- Student Research Committee, Department of Environmental Health Engineering, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Kiana Kargarian
- Student Research Committee, Department of Environmental Health Engineering, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Abdipour
- Student Research Committee, Department of Environmental Health Engineering, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
5
|
Kim JG, Sarrouf S, Ehsan MF, Baek K, Alshawabkeh AN. In-situ hydrogen peroxide formation and persulfate activation over banana peel-derived biochar cathode for electrochemical water treatment in a flow reactor. CHEMOSPHERE 2023; 331:138849. [PMID: 37146770 PMCID: PMC10291676 DOI: 10.1016/j.chemosphere.2023.138849] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Electrochemical advanced oxidation processes (EAOPs) are effective for the removal of organic contaminants from groundwater. The choice of an affordable cathode material that can generate reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) and hydroxyl radicals (•OH) will increase practicality and cost effectiveness of EAOPs. Carbon enriched biochar (BC), which is derived from pyrolysis of biomass, has emerged as an inexpensive and environmentally-friendly electrocatalyst for removing contaminants from groundwater. In this study, a banana peel-derived biochar (BP-BC) cathode packed in a stainless steel (SS) mesh was used in a continuous flow reactor to degrade the ibuprofen (IBP), as a model contaminant. The BP-BC cathodes generate H2O2 via a 2-electron oxygen reduction reaction, initiate the H2O2 decomposition to generate •OH, adsorb IBP from contaminated water, and oxidize IBP by formed •OH. Various reaction parameters such as pyrolysis temperature and time, BP mass, current, and flow rate, were optimized to maximize IBP removal. Initial experiments showed that H2O2 generation was limited (∼3.4 mg mL-1), resulting in only ∼ 40% IBP degradation, due to insufficient surface functionalities on the BP-BC surface. The addition of persulfate (PS) into the continuous flow system significantly improves the IBP removal efficiency via PS activation. The in-situ H2O2 formation and PS activation over BP-BC cathode results in concurrent generation of •OH and sulfate anion radicals (SO4•-, a reactive oxidant), respectively, which collectively achieve ∼ 100% IBP degradation. Further experiments with methanol and tertiary butanol as potential scavengers for •OH and SO4•- confirm their combined role in complete IBP degradation.
Collapse
Affiliation(s)
- Jong-Gook Kim
- Department of Environment and Energy (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabukdo, 54896, Republic of Korea
| | - Stephanie Sarrouf
- Department of Civil and Environmental Engineering, Northeastern University, Boston, 02115, MA, USA
| | - Muhammad Fahad Ehsan
- Department of Civil and Environmental Engineering, Northeastern University, Boston, 02115, MA, USA.
| | - Kitae Baek
- Department of Environment and Energy (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabukdo, 54896, Republic of Korea; Department of Environment & Energy and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea; Department of Environmental Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea.
| | - Akram N Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, 02115, MA, USA.
| |
Collapse
|
6
|
Priyadarshini M, Ahmad A, Das I, Ghangrekar MM, Dutta BK. Efficacious degradation of ethylene glycol by ultraviolet activated persulphate: reaction kinetics, transformation mechanisms, energy demand, and toxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85071-85086. [PMID: 37227630 DOI: 10.1007/s11356-023-27596-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
Ethylene glycol or 1,2-ethanediol (EG) is a persistent and toxic substance in the environment and extensively applied in petrochemical, surfactants, antifreeze, asphalt emulsion paints, cosmetics, plastics, and polyester fiber industries. Degradation of EG by using ultraviolet (UV) activated hydrogen peroxide (H2O2) and persulfate (PS) or persulfate anion (S2O82-) based advanced oxidation processes (AOPs) were explored. The result obtained demonstrate that UV/PS (85.7 ± 2.5%) has exhibited improved degradation efficiency of EG as compared to UV/H2O2 (40.4 ± 3.2%) at optimal operating conditions of 24 mM of EG concentration, 5 mM of H2O2, 5 mM of PS, 1.02 mW cm-2 of UV fluence, and pH of 7.0. Impacts of operating factors, including initial EG concentration, oxidant dosage, reaction duration, and the impact of different water quality parameters, were also explored in this present investigation. The degradation of EG in Milli-Q® water followed pseudo - first order reaction kinetics in both methods having a rate constant of about 0.070 min-1 and 0.243 min-1 for UV/H2O2 and UV/PS, respectively, at optimum operating conditions. Additionally, an economic assessment was also conducted under optimal experimental conditions, and the electrical energy per order and total operational cost for treating per m3 of EG-laden wastewater was observed to be about 0.042 kWh m-3 order-1 and 0.221 $ m-3 order-1, respectively, for UV/PS, which was slightly lower than UV/H2O2 (0.146 kWh m-3 order-1; 0.233 $ m-3 order-1). The potential degradation mechanisms were proposed based on intermediate by-products detected by Fourier transform infrared (FTIR) spectroscopy and gas chromatography-mass spectroscopy (GC-MS). Moreover, real petrochemical effluent containing EG was also treated by UV/PS, demonstrating 74.7 ± 3.8% of EG and 40.7 ± 2.6% of total organic carbon removal at 5 mM of PS and 1.02 mW cm-2 of UV fluence. A toxicity tests on Escherichia coli (E. coli) and Vigna radiata (green gram) confirmed non-toxic nature of UV/PS treated water.
Collapse
Affiliation(s)
- Monali Priyadarshini
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Azhan Ahmad
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Indrasis Das
- Environmental Engineering Department, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, 600020, India
| | - Makarand Madhao Ghangrekar
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Binay K Dutta
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
7
|
Huang C, Yang T, Li M, Mai J, Wu S, Li J, Ma G, Liu C, Jia J, Ma J. Generation of hydroxyl radicals via activation of Cr(VI) by UVA-LED for rapid decontamination: The important role of Cr(V). JOURNAL OF HAZARDOUS MATERIALS 2023; 442:129913. [PMID: 36152544 DOI: 10.1016/j.jhazmat.2022.129913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/19/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Hexavalent chromium (Cr(VI)) was activated by ultraviolet-A light-emitting diode (UVA-LED), resulting in efficient removal of various pollutants, including dye, pharmaceuticals, and pesticides, with pseudo-first-order rate constants of 0.0610-0.159 min-1. Comparatively, UVA-LED or Cr(VI) alone barely degraded selected pollutants. Both HO• and Cr(V) were produced in the UVA-LED/Cr(VI) system based on scavenging and probing experiments, UV-visible and electron spin resonance spectra analysis. HO• was demonstrated to be the dominant reactive species via stepwise regeneration of Cr(V) to Cr(VI). The quantum yield of HO• was determined to be 7.79 × 10-4 mol Es-1 at a Cr(VI) dosage of 0.5 mM and pH of 6.0. Additionally, the degradation efficiency of sulfamethoxazole (SMX) as a model compound decreased linearly as UVA-LED wavelengths increased from 365 to 405 nm, while SMX was barely degraded at visible light irradiation wavelength ranges (449-505 nm). SMX degradation efficiency increased from 71.0 % to 97.5 % as Cr(VI) dosage increased from 0.05 to 0.7 mM. pH displayed a negative impact on SMX degradation with its removal efficiency decreasing from 99.4 % to 13.3 % as pH increased from 3.0 to 9.0. This study first reported that HO• was generated via activation of Cr(VI) by UVA-LED, which is instructive for the removal of pollutants co-existed in chromium-containing wastewater.
Collapse
Affiliation(s)
- Cui Huang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Tao Yang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China.
| | - Mingwei Li
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Jiamin Mai
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Sisi Wu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University at Zhu Hai, Zhu Hai 519087, China
| | - Guobiao Ma
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Changyu Liu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Jianbo Jia
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
8
|
Wang X, Liang X, Guo X. Global distribution and potential risks of artificial sweeteners (ASs) with widespread contaminant in the environment: The latest advancements and future development. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Zhao QM, Jiang H, Wang Z. Electrochemical-enhanced MoS 2/Fe 3O 4 peroxymonosulfate (E/ MoS 2/Fe 3O 4/PMS) for degradation of sulfamerazine. CHEMOSPHERE 2022; 307:136198. [PMID: 36030935 DOI: 10.1016/j.chemosphere.2022.136198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Seeking effective methods to degrade organic pollutants has always been a hot research field. In this work, MoS2/Fe3O4 catalyst was synthesized by hydrothermal method with MoS2 as carrier to construct an advanced oxidation system of electrochemical enhanced MoS2/Fe3O4-activated peroxymonosulfate (E/MoS2/Fe3O4/PMS). The materials were characterized by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. The degradation efficiency of sulfamerazine (SM1) by E/MoS2/Fe3O4/PMS system was investigated and reaction mechanism was explored. The results showed that the removal rates of SM1 within 30 min were 31%, 20% and 89% with Fe3O4, MoS2 and MoS2/Fe3O4 as catalysts, respectively. The characterization results revealed that Fe(III) on the surface of Fe3O4 was reduced to Fe(II) and Mo(IV) was oxidized to Mo(VI) in the presence of MoS2. The synergistic effect between Fe3O4 and MoS2 enhanced the PMS decomposition and improved the SM1 removal efficiency. Free radical quenching experiments showed that SO4-⋅, ·OH, O2· and 1O2 were all involved in the degradation of SM1, and the effect of 1O2 was more significant than other active substances. Low concentrations of Cl- and humic acid (HA) had no significant inhibitory effect on the degradation of SM1, while HCO3- had a significant inhibitory effect on the E/MoS2/Fe3O4/PMS system. In addition, catalyst cycling experiments showed that MoS2/Fe3O4 maintained good stability before and after the catalytic reaction process.
Collapse
Affiliation(s)
- Quan-Ming Zhao
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Haotian Jiang
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenjun Wang
- School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
10
|
Rehman F, Parveen N, Iqbal J, Sayed M, Shah NS, Ansar S, Ali Khan J, Shah A, Jamil F, Boczkaj G. Potential degradation of norfloxacin using UV-C/Fe2+/peroxides-based oxidative pathways. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
A Review of Hybrid Process Development Based on Electrochemical and Advanced Oxidation Processes for the Treatment of Industrial Wastewater. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1155/2022/1105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Nowadays, increased human activity, industrialization, and urbanization result in the production of enormous quantities of wastewater. Generally, physicochemical and biological methods are employed to treat industrial effluent and wastewater and have demonstrated high efficacy in removing pollutants. However, some industrial effluent and wastewater contain contaminants that are extremely difficult to remove using standard physicochemical and biological processes. Previously, electrochemical and hybrid advanced oxidation processes (AOP) were considered a viable and promising alternative for achieving an adequate effluent treatment strategy in such instances. These processes rely on the production of hydroxyl radicals, which are highly reactive oxidants that efficiently break down contaminants found in wastewater and industrial effluent. This review focuses on the removal of contaminants from industrial effluents and wastewater through the integration of electrochemical and advanced oxidation techniques. These processes include electrooxidation, electrocoagulation/electroflocculation, electroflotation, photo-Fenton, ozone-photo-Fenton, sono-photo-Fenton, photo-electro-Fenton, ozone/electrocoagulation, sono-electrocoagulation, and peroxi/photo/electrocoagulation. The data acquired from over 150 published articles, most of which were laboratory experiments, demonstrated that the hybrid process is more effective in removing contaminants from industrial effluent and wastewater than standalone processes.
Collapse
|
12
|
Zhang Q, Fang S, Cheng X, Wang F, Zhang L, Huang W, Du W, Fang F, Cao J, Luo J. Persulfate-based strategy for promoted acesulfame removal during sludge anaerobic fermentation: Combined chemical and biological effects. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128922. [PMID: 35452991 DOI: 10.1016/j.jhazmat.2022.128922] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
The acesulfame (ACE) degradation in waste activated sludge (WAS) via direct anaerobic fermentation is difficult and the efficient elimination techniques are imperative for the ultimate safe WAS disposal. Persulfate (PS)-based approach was developed to promote the ACE removal during WAS anaerobic fermentation. Results demonstrated the effectiveness of PS-based treatments on ACE degradation, and the ACE removal efficiency was respectively 48.2% and 96.2% in the PS and PS/Fe-treated reactors while it was only 6.0% in the control reactor. Mechanism explorations revealed that the active free radicals (i.e. OH• and SO4•-) generated in the PS-based reactors were the key oxidative species for the ACE degradation. However, such effects were interfered by the released soluble substrates (i.e. protein, carbohydrate and inorganic ions) during anaerobic fermentation by competing and/or quenching free radicals, which caused the deceleration of the ACE removal efficiency. Moreover, the PS-based treatment facilitated the enrichment of functional microorganisms (i.e. Phyllobacteriaceae and Bradyrhizobiaceae) and upregulated the critical genes (i.e. pncB and nadE) involved in the ACE degradation. Based on the density functional theory (DFT) and metabolic intermediates analysis, the hydroxylation and oxidative ring-opening were the two main proposed metabolic pathways for ACE degradation. Overall, the combined chemical and biological metabolism effects collectively contributed to the efficient ACE degradation, and it provided a novel and effective strategy for refractory pollutants removal during WAS anaerobic fermentation.
Collapse
Affiliation(s)
- Qin Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xiaoshi Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Le Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wei Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, China.
| |
Collapse
|
13
|
Liu Y, Ji X, Yang J, Tang W, Zhu Y, Wang Y, Zhang Y, Zhang Y, Duan J, Li W. Degradation of the typical herbicide atrazine by UV/persulfate: kinetics and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43928-43941. [PMID: 35122644 DOI: 10.1007/s11356-022-18717-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Atrazine (ATZ), a widely used herbicide, had received a significant amount of attention due to its widespread detection in aquatic environments as well as its potential risks to human health. UV/persulfate (PS) process is an emerging technology for degrading organic pollutants in water. Thus, the degradation of ATZ by a UV/PS process was investigated in this study. The results showed that the removal rate of ATZ was 98.4% with a PS dosage of 2 mg/L and an initial ATZ concentration of 0.1 mg/L. In addition, a relatively high degradation efficiency was obtained under pH = 7. However, the addition of humic acid (HA) reduced the removal rate of ATZ. Hydroxyl radicals (•OH) and sulfate radicals (•SO4-) respectively contributed to 21.7% and 29% of the ATZ degradation. The ATZ degradation pathway was proposed, and the main reactions of ATZ in this UV/PS process included dechlorination, demethylation, and deethylation. Moreover, the toxicity of ATZ and its degradation products was assessed using the Toxicity Estimation Software Tool (TEST), and the results showed that the toxicity of the ATZ solution was reduced after the UV/PS process. These results indicate that UV/PS shows good promise as a remediation technique for the treatment of persistent herbicides such as ATZ in contaminated water.
Collapse
Affiliation(s)
- Yucan Liu
- School of Civil Engineering, Yantai University, Yantai, 264005, China
| | - Xianguo Ji
- School of Civil Engineering, Yantai University, Yantai, 264005, China
| | - Jingjie Yang
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264005, China
| | - Wei Tang
- Yantai City Drainage Service Center, Yantai, 264000, China
| | - Yuliang Zhu
- School of Civil Engineering, Yantai University, Yantai, 264005, China
| | - Ying Wang
- School of Civil Engineering, Yantai University, Yantai, 264005, China
| | - Yanxiang Zhang
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264005, China.
| | - Yan Zhang
- School of Civil Engineering, Yantai University, Yantai, 264005, China.
| | - Jinming Duan
- Centre for Water Management and Reuse, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA, 5095, Australia
| | - Wei Li
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an , 710055, China
| |
Collapse
|