1
|
Zeng K, Huang X, Dai C, He C, Chen H, Guo J, Xin G. Bacterial community regulation of soil organic matter molecular structure in heavy metal-rich mangrove sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133086. [PMID: 38035526 DOI: 10.1016/j.jhazmat.2023.133086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/30/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Heavy metals (HMs) profoundly impact soil carbon storage potential primarily through soil carbon structure. The association between HM content and soil carbon structure in mangrove sediments remains unclear, likely due to the involvement of microorganisms. In this study, surface sediments in the Futian National Mangrove Nature Reserve were sampled to investigate the chemical structure of soil organic carbon (SOC), the molecular composition of dissolved organic matter (DOM), and potential interactions with microorganisms. HMs, except for Ni, were positively correlated with soil carbon. HMs significantly reduced the alkyl C/O-alkyl C ratio, aromaticity index, and aromatic C values, but increased the labile carboxy/amide C and carbonyl C ratio in SOC. HMs also increased DOM stability, as reflected by the reduced abundance of labile DOM (lipids and proteins) and increased proportion of stable DOM (tannins and condensed aromatics). Bacteria increased the decomposition of labile DOM components (unsaturated hydrocarbons) and the accumulation of stable DOM components (lignins) under HM enrichment. In addition, the association between the bacterial groups and DOM molecules was more robust than that with fungal groups, indicating bacteria had a more significant impact on DOM molecular composition. These findings help in understanding the molecular mechanisms of soil carbon storage in HM-rich mangroves.
Collapse
Affiliation(s)
- Kai Zeng
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaochen Huang
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Chuanshun Dai
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chuntao He
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Hao Chen
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Junjie Guo
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Guorong Xin
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
2
|
Deng W, Lu Y, Lyu M, Deng C, Li X, Jiang Y, Zhu H, Yang Y, Xie J. Chemical composition of soil carbon is governed by microbial diversity during understory fern removal in subtropical pine forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169904. [PMID: 38185157 DOI: 10.1016/j.scitotenv.2024.169904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Understory vegetation has an important impact on soil organic carbon (SOC) accumulation. However, little is known about how understory vegetation alters soil microbial community composition and how microbial diversity contributes to SOC chemical composition and persistence during subtropical forest restoration. In this study, removal treatments of an understory fern (Dicranopteris dichotoma) were carried out within pine (Pinus massoniana) plantations restored in different years in subtropical China. Soil microbial community composition and microbial diversity were measured using phospholipid fatty acids (PLFAs) biomarkers and high-throughput sequencing, respectively. The chemical composition of SOC was also measured via solid-state 13C nuclear magnetic resonance (13C NMR). Our results showed that fern removal decreased alkyl C by 4.2 % but increased O-alkyl C by 15.6 % on average, leading to a decline of alkyl C/O-alkyl C ratio, suggesting altered chemical composition of SOC and lowered SOC recalcitrance without fern. Fern removal significantly lowered the fungi-to-bacteria ratio, and it also reduced fungal and bacterial diversity. Partial correlation analysis revealed that soil nitrogen availability was a key factor influencing microbial diversity. Bacterial diversity showed a close relationship with the Alkyl C/O-alkyl C ratio following fern removal. Furthermore, the microbial community structure and bacterial diversity were responsible for 18 % and 55 % of the explained variance in the chemical composition of SOC, respectively. Taken together, these analyses jointly suggest that bacterial diversity exerts a greater role than microbial community structure in supporting SOC persistence during understory fern removal. Our study emphasizes the significance of understory ferns in supporting microbial abundance and diversity as a means of altering SOC persistence during subtropical forest restoration.
Collapse
Affiliation(s)
- Wei Deng
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Yuming Lu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Maokui Lyu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China; Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Sanming 365002, China.
| | - Cui Deng
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Xiaojie Li
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Yongmeng Jiang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Hongru Zhu
- Fujian Province Forestry Survey and Planning Institute, Fuzhou 350003, China
| | - Yusheng Yang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China; Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Sanming 365002, China
| | - Jinsheng Xie
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China; Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Sanming 365002, China.
| |
Collapse
|
3
|
Wan P, Zhao X, Ou Z, He R, Wang P, Cao A. Forest management practices change topsoil carbon pools and their stability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166093. [PMID: 37549706 DOI: 10.1016/j.scitotenv.2023.166093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Forest management may lead to changes in soil carbon and its stability, and the effects are variable owing to the differences in management methods. Our study aimed to determine the impacts of different forest management practices on soil carbon pools and their stability. We chose a natural oak forest, where different forest-management strategies have been practiced. Forest management strategies included cultivating target trees by removing interference trees (CNFM), optimizing the forest spatial structure by the structural parameters (SBFM), reducing the stand density by harvesting timber (SFCS), and using unmanaged forests as controls (NT). Topsoil (depth of 0-10 cm) was collected after eight years of forest management. Soil organic carbon (SOC), labile organic carbon components and the microbial community were determined, and SOC chemical compositions were assessed by nuclear magnetic resonance. The CNFM and SFCS strategies had smaller dissolved organic carbon contents than the NT and SBFM strategies, and the CNFM strategy increased the ratio of alkyl C and o-alkyl C, indicating that the SOC was more stable. Forest management strategies changed the SOC and its labile C pool by adjusting the soil total nitrogen,β-glucosidase, cellobiohydrolase, fine-root carbon and fungal operational taxonomic units, and the SOC chemical compositions were influenced by the number of fungal species. These findings suggest that the soil organic carbon decreased, but its stability increased in the natural forest under the practice of cultivating target trees by removing interference trees. The SOC pools could be regulated by soil nitrogen, enzyme activity, fine roots, and fungi, while soil fungi could affect SOC stability.
Collapse
Affiliation(s)
- Pan Wan
- College of forestry, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Xiaolong Zhao
- College of forestry, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zeyu Ou
- College of forestry, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Ruirui He
- College of forestry, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Peng Wang
- Xiaolongshan Research Institute of Forestry of Gansu Province, Tianshui 741000, PR China
| | - Anan Cao
- Xiaolongshan Research Institute of Forestry of Gansu Province, Tianshui 741000, PR China
| |
Collapse
|
4
|
Li W, Li Z, Liu Y, Nie X, Zheng H, Zhang G, Wang S, Ma Y. Soil nutrients shape the composition and function of fungal communities in abandoned ancient rice terraces. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117064. [PMID: 36535145 DOI: 10.1016/j.jenvman.2022.117064] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
In recent decades, terraces abandonment has been prevalent in the hilly areas of China. Soil fungi play an important role in clarifying soil ecosystematic feedback after ancient rice terraces abandonment, but how their community composition and function shift remains unclear. Soil profiles of 0-120 cm were excavated in ancient rice terraces, dry land, and forest land (formed from ancient rice terraces abandonment), respectively. The 13C NMR and high-throughput sequencing were used to determine soil organic carbon chemical groups and fungal community, respectively, and FUNGuild was used to predict functional groups. The results showed that the soil fungal community changed from Ascomycota to Basidiomycota after ancient rice terraces abandonment. The trophic modes of dry land and forest land were transformed into pathotrophic fungi and symbiotrophic fungi, respectively. The number of nodes and edges of fungal co-occurrence networks increased by 83.8% and 644.1% in dry land, and 81.3% and 431.2% in forest land, respectively. Moreover, soil nutrients (especially DOC, TN, and TP) can more affected the variation of fungal community composition and function than soil organic carbon chemical groups. These findings indicate that soil fungal community shifts in different directions in response to ancient rice terraces abandonment, which is related to the adaptive strategies for environmental changes and may be more conducive to the acquisition and turnover of soil nutrients.
Collapse
Affiliation(s)
- Wenqing Li
- School of Geographic Sciences, Hunan Normal University, Changsha, 410081, PR China; Key Laboratory of Subtropical Ecology and Environmental Change, Hunan Normal University, Changsha, 410081, PR China
| | - Zhongwu Li
- School of Geographic Sciences, Hunan Normal University, Changsha, 410081, PR China; Key Laboratory of Subtropical Ecology and Environmental Change, Hunan Normal University, Changsha, 410081, PR China.
| | - Yaojun Liu
- School of Geographic Sciences, Hunan Normal University, Changsha, 410081, PR China; Key Laboratory of Subtropical Ecology and Environmental Change, Hunan Normal University, Changsha, 410081, PR China
| | - Xiaodong Nie
- School of Geographic Sciences, Hunan Normal University, Changsha, 410081, PR China; Key Laboratory of Subtropical Ecology and Environmental Change, Hunan Normal University, Changsha, 410081, PR China
| | - Han Zheng
- School of Geographic Sciences, Hunan Normal University, Changsha, 410081, PR China
| | - Guangye Zhang
- School of Geographic Sciences, Hunan Normal University, Changsha, 410081, PR China; Key Laboratory of Subtropical Ecology and Environmental Change, Hunan Normal University, Changsha, 410081, PR China
| | - Shuyuan Wang
- School of Geographic Sciences, Hunan Normal University, Changsha, 410081, PR China; Key Laboratory of Subtropical Ecology and Environmental Change, Hunan Normal University, Changsha, 410081, PR China
| | - Yichun Ma
- School of Geographic Sciences, Hunan Normal University, Changsha, 410081, PR China; Key Laboratory of Subtropical Ecology and Environmental Change, Hunan Normal University, Changsha, 410081, PR China
| |
Collapse
|
5
|
Chen L, Zhou W, Luo L, Li Y, Chen Z, Gu Y, Chen Q, Deng O, Xu X, Lan T, Gao X, Zhang S, Deng L. Short-term responses of soil nutrients, heavy metals and microbial community to partial substitution of chemical fertilizer with spent mushroom substrates (SMS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157064. [PMID: 35780897 DOI: 10.1016/j.scitotenv.2022.157064] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/10/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Currently, many spent mushroom substrates (SMS) are produced each year, which have the great potential to replace partial chemical fertilizer in agricultural production due to the high content of organic matter in SMS. However, how the replacement of chemical fertilizer by different SMS affected soil nutrients and contamination was less reported. Therefore, this study applied Enoki mushroom substrates (EMR), Agaricus bisporus substrates (ABR), or Auricularia auricula substrates (AAR) to replace 25 % chemical fertilizers (based on N fertilizer) with understanding the role of SMS replacement in affecting soil nutrients, heavy metals, and microbial community via the short-term field study, respectively. Compared to chemical fertilizer (CF), the contents of organic matter (OM), total P (TP), and K (TK) in SMS replaced soils were significantly increased by 1.96-4.22, 0.08-0.12, and 0.03-0.53 g kg-1, respectively. Among three SMS replacements, AAR demonstrated the highest increment of soil nutrients. On the other hand, EMR and ABR replacements reduced the contents of total and acid-soluble Cd, Pb, and As by 7.94-30.32 % and 0-31.61 % in soils relative to CF, respectively. Unlike EMR and ABR, AAR reduced 11.08-16.04 % of total Cd, Pb, and As but increased 62.58 % acid-soluble As in soils. Furthermore, it was found that all SMS replacements increased the relative abundance of Proteobacteria, while ABR also increased the relative abundance of Actinobacteria in soils compared to CF. Besides, EMR and ABR replacements increased the relative abundance of Mortierellomycota relative to CF. Finally, it can be known that partial replacement of chemical fertilizer by SMS could elevate soil nutrients (especially AAR) and reduce heavy metals (especially EMR), which further improved microbial diversity and community composition. This study provides information on applying SMS to replace partial chemical fertilizer to elevate nutrients and reduce heavy metals contamination.
Collapse
Affiliation(s)
- Ludan Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Wei Zhou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yirong Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhuo Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Qiang Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ouping Deng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xiaoxun Xu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ting Lan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xuesong Gao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shirong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Liangji Deng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| |
Collapse
|