1
|
Yao C, Zhang J, Gao L, Jin C, Wang S, Jiang W, Liang H, Feng P, Li X, Ma L, Wei H, Sun C. Enhancing sodium percarbonate catalytic wet peroxide oxidation with artificial intelligence-optimized swirl flow: Ni single atom sites on carbon nanotubes for improved reactivity and silicon resistance. CHEMOSPHERE 2024; 346:140606. [PMID: 37939928 DOI: 10.1016/j.chemosphere.2023.140606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
H2O2 is widely used in the treatment of refractory organic pollutants.However, due to its explosive and corrosive chemical characteristics, H2O2 will bring great safety risks and troubles in transportation.So we chose sodium percarbonate(SPC) to be used in catalytic wet peroxide oxidation enhanced by swirl flow(SF-CWPO) and we designed carbon nanotubes with Ni single atom sites(Ni-NCNTs/AC) to activate SPC to treat an m-cresol wastewater containing Si.Meanwhile, artificial intelligence which used Artificial neural network (ANN) was used to optimize the conditions.Under the conditions of pH = 9.27, reaction time of 8.91 min, m-cresol concentration is 59.09 mg L-1, SPC dosage is 2.80 g L-1 and Na2SiO3·9H2O dosage is 77.27 mg L-1, the degradation rate of total organic carbon(TOC) and m-cresol reaches 94.37% and 100%, respectively.Finally, the applicability of Ni-NCNTs/AC-SPC-SF-CWPO technology was evaluated in a wastewater system of a sewage treatment enterprise and Fourier transform ion cyclotron resonance mass spectrum(FT-ICR MS) analysis and chemical oxygen demand(COD) analysis showed the great ability of Ni-NCNTs/AC-SPC-SF-CWPO technology to treat wastewater.It is believed that this paper is of great significance to the design and construction of the in-depth research and industrial application of SF-CWPO.
Collapse
Affiliation(s)
- Chenxing Yao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhang
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology/College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Liansong Gao
- Shenyang Jianzhu University, Shenyang, 110168, China
| | - Chengyu Jin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengzhe Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenshuo Jiang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanrui Liang
- Guangxi Normal University, Guilin, 541006, China
| | - Pan Feng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xianru Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lei Ma
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology/College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Huangzhao Wei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Chenglin Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
2
|
Photocatalytic activity of ZnO-PbS nanoscale toward Allura Red AC in an aqueous solution: Characterization and mechanism study. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Farsi M, Nezamzadeh-Ejhieh A. A coupled Cobalt(II) oxide-Silver Tungstate nano-photocatalyst: Moderate characterization and evaluation of the photocatalysis kinetics towards methylene blue in aqueous solution. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Zhou W, Yu B, Zhu J, Li K, Tian S. Enhanced photocatalytic activities of a hierarchical ZnO/V 2C MXene hybrid with a close coupling heterojunction for the degradation of methyl orange, phenol and methylene blue dye. NEW J CHEM 2022. [DOI: 10.1039/d2nj02658a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hierarchical ZnO/V2C MXene hybrid exhibited enhanced photocatalytic performance due to its close coupling heterojunction facilitating photo-generated carrier transfer.
Collapse
Affiliation(s)
- Weibing Zhou
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Bo Yu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Jiaoqun Zhu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Kang Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Shouqin Tian
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, Hubei, China
| |
Collapse
|