1
|
Coimbra C, Branco R, da Silva PSP, Paixão JA, Martins JMF, Spadini L, Morais PV. Yttrium immobilization through biomineralization with phosphate by the resistant strain Mesorhizobium qingshengii J19. J Appl Microbiol 2024; 135:lxae156. [PMID: 38925658 DOI: 10.1093/jambio/lxae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
AIMS Yttrium (Y) holds significant industrial and economic importance, being listed as a critical element on the European list of critical elements, thus emphasizing the high priority for its recovery. Bacterial strategies play a crucial role in the biorecovery of metals, offering a promising and environmentally friendly approach. Therefore, gaining a comprehensive understanding of the underlying mechanisms behind bacterial resistance, as well as the processes of bioaccumulation and biotransformation, is of paramount importance. METHODS AND RESULTS A total of 207 Alphaproteobacteria strains from the University of Coimbra Bacteria Culture Collection were tested for Y-resistance. Among these, strain Mesorhizobium qingshengii J19 exhibited high resistance (up to 4 mM Y) and remarkable Y accumulation capacity, particularly in the cell membrane. Electron microscopy revealed Y-phosphate interactions, while X-ray diffraction identified Y(PO3)3·9H2O biocrystals produced by J19 cells. CONCLUSION This study elucidates Y immobilization through biomineralization within phosphate biocrystals using M. qingshengii J19 cells.
Collapse
Affiliation(s)
- Carina Coimbra
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, ARISE, Department of Life Sciences, 3000-456 Coimbra, Portugal
| | - Rita Branco
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, ARISE, Department of Life Sciences, 3000-456 Coimbra, Portugal
| | - Pedro S P da Silva
- University of Coimbra, CFisUC, Department of Physics, 3004-516 Coimbra, Portugal
| | - José A Paixão
- University of Coimbra, CFisUC, Department of Physics, 3004-516 Coimbra, Portugal
| | - Jean M F Martins
- Univ. Grenoble Alpes, CNRS, IRD, Grenoble-INP, IGE, 38000 Grenoble, France
| | - Lorenzo Spadini
- Univ. Grenoble Alpes, CNRS, IRD, Grenoble-INP, IGE, 38000 Grenoble, France
| | - Paula V Morais
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, ARISE, Department of Life Sciences, 3000-456 Coimbra, Portugal
| |
Collapse
|
2
|
Zhang Y, Wang L, Liu X, Cao C, Yao J, Ma Z, Shen Q, Chen Q, Liu J, Li R, Jiang J. Enhancing La(III) biosorption and biomineralization with Micromonospora saelicesensis: Involvement of phosphorus and formation of monazite nano-minerals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169851. [PMID: 38185165 DOI: 10.1016/j.scitotenv.2023.169851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/15/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
The release of rare earth elements (REEs) from mining wastes and their applications has significant environmental implications, necessitating the development of effective prevention and reclamation strategies. The mobility of REEs in groundwater due to microorganisms has garnered considerable attention. In this study, a La(III) resistant actinobacterium, Micromonospora saelicesensis KLBMP 9669, was isolated from REE enrichment soil in GuiZhou, China, and evaluated for its ability to adsorb and biomineralize La(III). The findings demonstrated that M. saelicesensis KLBMP 9669 immobilized La(III) through the physical and chemical interactions, with immobilization being influenced by the initial La(III) concentration, biomass, and pH. The adsorption kinetics followed a pseudo-second-order rate model, and the adsorption isotherm conformed to the Langmuir model. La(III) adsorption capacity of this strain was 90 mg/g, and removal rate was 94 %. Scanning electron microscope (SEM) coupled with energy dispersive X-ray spectrometer (EDS) analysis revealed the coexistence of La(III) with C, N, O, and P. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) investigations further indicated that carboxyl, amino, carbonyl, and phosphate groups on the mycelial surface may participate in lanthanum adsorption. Transmission electron microscopy (TEM) revealed that La(III) accumulation throughout the M. saelicesensis KLBMP 9669, with some granular deposits on the mycelial surface. Selected area electron diffraction (SAED) confirmed the presence of LaPO4 crystals on the M. saelicesensis KLBMP 9669 biomass after a prolonged period of La(III) accumulation. This post-sorption nano-crystallization on the M. saelicesensis KLBMP 9669 mycelial surface is expected to play a crucial role in limiting the bioimmobilization of REEs in geological repositories.
Collapse
Affiliation(s)
- Ya Zhang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Lili Wang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Xiuming Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550002, PR China
| | - Chengliang Cao
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China.
| | - Jiaqi Yao
- The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Zhouai Ma
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Qi Shen
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Qiuyu Chen
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Jinjuan Liu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China.
| | - Rongpeng Li
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| |
Collapse
|
3
|
Yan M, Gao Q, Shao D. Elimination of uranium pollution from coastal nuclear power plant by marine microorganisms: Capability and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169959. [PMID: 38190894 DOI: 10.1016/j.scitotenv.2024.169959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/10/2024]
Abstract
Uranium is one of the sensitive radionuclides in the wastewater of nuclear powers. Due to the fact that nuclear powers are mainly located in coastal areas, the elimination of uranium (U(VI)) pollution from coastal nuclear power is ultimately rely on marine microorganisms. The fixing of U(VI) on V. alginolyticus surface or converting it into sediments is an effective elimination strategy for U(VI) pollution. In this work, typical marine microorganism V. alginolyticus was used to evaluate the elimination of U(VI) pollution by marine microorganisms. Effects of solution conditions (such as pH, temperature, and bacterium concentrations) on the physicochemical properties and elimination capabilities of V. alginolyticus were studied in detail. FT-IR, XPS and XRD results reveal that COOH, NH2, OH and PO4 on V. alginolyticus were main functional groups for U(VI) elimination and formed (UO2)3(PO4)2·H2O. The elimination of U(VI) by V. alginolyticus includes two stages of adsorption and biomineralization. The theoretical maximum adsorption capacity (Cs,max) of V. alginolyticus for U(VI) can reach up to 133 mg/g at pH 5 and 298 K, and the process reached equilibrium in 3 h. Results show that V. alginolyticus play important role in the elimination of U(VI) pollution in seawater.
Collapse
Affiliation(s)
- Meng Yan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Qianhong Gao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Dadong Shao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
4
|
Xin J, Hong C, Wei J, Qie J, Wang H, Lei B, Li X, Cai Z, Kang Q, Zeng Z, Liu Y. A comprehensive review of radioactive pollution treatment of uranium mill tailings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102104-102128. [PMID: 37684506 DOI: 10.1007/s11356-023-29401-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023]
Abstract
Natural uranium is a crucial resource for clean nuclear energy, which has brought significant economic and social benefits to humanity. However, the development and utilization of uranium resources have also resulted in the accumulation of vast amounts of uranium mill tailings (UMTs), which pose a potential threat to human health and the ecological environment. This paper reviews the research progress on UMTs treatment technologies, including cover disposal, solidification disposal, backfilling disposal, and bioremediation methods. It is found that cover disposal is a versatile method for the long-term management of UMTs, the engineering performance and durability of the cover system can be improved by choosing suitable stabilizers for the cover layer. Solidification disposal can convert UMTs into solid waste for permanent disposal, but it produces a large amount of waste and requires high operating costs; it is necessary to explore the effectiveness and efficiency of solidification disposal for UMTs, while minimizing the bad environmental impact. Backfilling disposal realizes the resource utilization of solid waste, but the high radon exhalation rate caused by the UMTs backfilling also needs to be considered. Bioremediation methods have low investment costs and are less likely to cause secondary pollution, but the remediation efficiency is low, it can be combined with other treatment technologies to remedy the defects of a single remediation method. The article concludes with key issues and corresponding suggestions for the current UMTs treatment methods, which can provide theoretical guidance and reference for further development and application of radioactive pollution treatment of UMTs.
Collapse
Affiliation(s)
- Jiayi Xin
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Changshou Hong
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang, 421001, China.
| | - Jia Wei
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Jingwen Qie
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Hong Wang
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Bo Lei
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Xiangyang Li
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Ziqi Cai
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Qian Kang
- School of Emergency Management and Safety Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Zhiwei Zeng
- Department of Radiological Medicine and Environmental Medicine, China Institute for Radiation Protection, Taiyuan, 030000, China
| | - Yong Liu
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518061, China
| |
Collapse
|
5
|
Wang J, Chen Q, Yan P, Dong C, Shao Z. Isolation and Optimization of Aflatoxin B 1 Degradation by Uniform Design and Complete Genome Sequencing of Novel Deep-Sea Kocuria rosea Strain 13. Toxins (Basel) 2023; 15:520. [PMID: 37755946 PMCID: PMC10534749 DOI: 10.3390/toxins15090520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Aflatoxin B1 is a natural carcinogenic mycotoxin. The biological detoxification of aflatoxin could result in less environmental pollution, more moderate conditions, and less impact on food and feed, and be more convenient than physical and chemical methods. In this study, strain 13 with aflatoxin B1 degradation activity (67.47 ± 1.44%) was isolated and identified as Kocuria rosea. A uniform design was applied to optimize the degradation activity using a software Data Processing System, and a quadratic polynomial stepwise regression model was selected to investigate the relationships between the degradation rate and five independent variables. Furthermore, the optimal degradation conditions (culture temperature of 30 °C, culture time of 4.2 days, seawater ratio of 100%, pH of 7.11, and inoculation dosage of 0.09%) were verified with a degradation rate of 88 ± 0.03%, which was well matched with the predicted value (92.97%) of the model. Complete genome sequencing of Kocuria rosea, conducted with a combination of Illumina and single-molecule real-time sequencing, was used to analyze the genomic features and functions of the strain, which were predicted by the annotation based on seven databases, and may provide insights into the potential of Kocuria rosea, as well as providing a reference for degradation gene and protein mining. These results indicate that Kocuria rosea strain 13 has the ability to degrade aflatoxin B1 efficiently, and it also has the potential to provide aflatoxin-degrading enzymes.
Collapse
Affiliation(s)
- Jingying Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; (J.W.)
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, China
| | - Qiqi Chen
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; (J.W.)
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, China
| | - Peisheng Yan
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; (J.W.)
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, China
| | - Chunming Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, China
- Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 350002, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, China
- Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 350002, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| |
Collapse
|
6
|
Jin SR, Cho BG, Mun SB, Kim SJ, Cho CW. Investigation on the adsorption affinity of organic micropollutants on seaweed and its QSAR study. ENVIRONMENTAL RESEARCH 2023:116349. [PMID: 37290627 DOI: 10.1016/j.envres.2023.116349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 06/10/2023]
Abstract
Seaweed, one of the most abundant biomaterials, can be used as a biosorbent to remove organic micropollutants. In order to effectively use seaweed to remove a variety of micropollutants, it is vital to rapidly estimate the adsorption affinity according to the types of micropollutants. Thus, the isothermal adsorption affinities of 31 organic micropollutants in neutral or ionic form on seaweed were measured, and a predictive model using quantitative structure-adsorption relationship (QSAR) modeling was developed. As a result, it was found that the types of micropollutants had a significant effect on the adsorption of seaweed, as expected, and QSAR modeling with a predictability (R2) of 0.854 and a standard error (SE) of 0.27 log units using a training set could be developed. The model's predictability was internally and externally validated using leave-one-out cross validation and a test set. Its predictability for the external validation set was R2 = 0.864, SE = 0.171 log units. Using the developed model, we identified the most important driving forces of the adsorption at the molecular level: Coulomb interaction of the anion, molecular volume, and H-bond acceptor and donor, which significantly affect the basic momentum of molecules on the surface of seaweed. Moreover, in silico calculated descriptors were applied to the prediction, and the results revealed reasonable predictability (R2 of 0.944 and SE of 0.17 log units). Our approach provides an understanding of the adsorption process of seaweed for organic micropollutants and an efficient prediction method to estimate the adsorption affinities of seaweed and micropollutants in neutral and ionic forms.
Collapse
Affiliation(s)
- Se-Ra Jin
- Department of Bioenergy Science and Technology, Chonnam National University, Yongbong-ro 77, Buk-gu, 61186, Gwangju, Republic of Korea; Department of Integrative Food, Bioscience, and Biotechnology, Chonnam National University, Yongbong-ro 77, Buk-gu, 61186, Gwangju, Republic of Korea
| | - Bo-Gyeon Cho
- Department of Bioenergy Science and Technology, Chonnam National University, Yongbong-ro 77, Buk-gu, 61186, Gwangju, Republic of Korea; Department of Integrative Food, Bioscience, and Biotechnology, Chonnam National University, Yongbong-ro 77, Buk-gu, 61186, Gwangju, Republic of Korea
| | - Se-Been Mun
- Department of Bioenergy Science and Technology, Chonnam National University, Yongbong-ro 77, Buk-gu, 61186, Gwangju, Republic of Korea; Department of Integrative Food, Bioscience, and Biotechnology, Chonnam National University, Yongbong-ro 77, Buk-gu, 61186, Gwangju, Republic of Korea
| | - Soo-Jung Kim
- Department of Integrative Food, Bioscience, and Biotechnology, Chonnam National University, Yongbong-ro 77, Buk-gu, 61186, Gwangju, Republic of Korea.
| | - Chul-Woong Cho
- Department of Bioenergy Science and Technology, Chonnam National University, Yongbong-ro 77, Buk-gu, 61186, Gwangju, Republic of Korea; Department of Integrative Food, Bioscience, and Biotechnology, Chonnam National University, Yongbong-ro 77, Buk-gu, 61186, Gwangju, Republic of Korea.
| |
Collapse
|
7
|
Wang Y, Zhang Y, Liu X, Sun S, Qin S, Huang J, Chen B. Fabrication of phosphoric-crosslinked chitosan@g-C 3N 4 gel beads for uranium(VI) separation from aqueous solution. Int J Biol Macromol 2023:124998. [PMID: 37236563 DOI: 10.1016/j.ijbiomac.2023.124998] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
In this work, a novel g-C3N4 filled, phosphoric-crosslinked chitosan gel bead (P-CS@CN) was successfully prepared to adsorb U(VI) from water. The separation performance of chitosan was improved by introducing more functional groups. At pH 5 and 298 K, the adsorption efficiency and adsorption capacity could reach 98.0 % and 416.7 mg g-1, respectively. After adsorption, the morphological structure of P-CS@CN did not change and adsorption efficiency remained above 90 % after 5 cycles. P-CS@CN exhibited an excellent applicability in water environment based on dynamic adsorption experiments. Thermodynamic analyses demonstrated the value of ΔG, manifesting the spontaneity of U(VI) adsorption process on P-CS@CN. The positive values of ΔH and ΔS showed that the U(VI) removal behavior of P-CS@CN was an endothermic reaction, indicating that the increase of temperature was great benefit to the removal. The adsorption mechanism of P-CS@CN gel bead could be summarized as the complexation reaction with the surface functional groups. This study not only developed an efficient adsorbent for the treatment of radioactive pollutants, but also provided a simple and feasible strategy for the modification of chitosan-based adsorption materials.
Collapse
Affiliation(s)
- Yan Wang
- School of Mathematics and Physics, Mianyang Teachers' College, Mianyang 621000, PR China.
| | - Yong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Xiaolin Liu
- School of Mathematics and Physics, Mianyang Teachers' College, Mianyang 621000, PR China
| | - Sen Sun
- School of Mathematics and Physics, Mianyang Teachers' College, Mianyang 621000, PR China
| | - Shiyi Qin
- School of Mathematics and Physics, Mianyang Teachers' College, Mianyang 621000, PR China
| | - Jiaqi Huang
- School of Mathematics and Physics, Mianyang Teachers' College, Mianyang 621000, PR China
| | - Bowei Chen
- School of Mathematics and Physics, Mianyang Teachers' College, Mianyang 621000, PR China
| |
Collapse
|