1
|
Cui S, Lv J, Hough R, Fu Q, Zhang Z, Dong X, Fan X, Li YF. Imidacloprid removal by modified graphitic biochar with Fe/Zn bimetallic oxides. ENVIRONMENTAL RESEARCH 2024; 258:119444. [PMID: 38914251 DOI: 10.1016/j.envres.2024.119444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/01/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024]
Abstract
Coping with the critical challenge of imidacloprid (IMI) contamination in sewage treatment and farmland drainage purification, this study presents a pioneering development of an advanced modified graphitic white melon seed shells biochar (Fe/Zn@WBC). The Fe/Zn@WBC demonstrates a substantial enhancement in adsorption efficiency for IMI, achieving a remarkable removal rate of 87.69% within 30 min and a significantly higher initial adsorption rate parameter h = 4.176 mg g-1·min-1. This significant improvement outperforms WBC (12.22%, h = 0.115 mg g-1·min-1) and highlights the influence of optimized adsorption conditions at 900 °C and the graphitization degree resulting from Fe/Zn bimetallic oxide modification. Characterization analysis and batch sorption experiments including kinetics, isotherms, thermodynamics and pH factors illustrate that chemical adsorption is the main type of adsorption mechanism responsible for this superior ability to remove IMI through pore filling, hydrogen bonding, hydrophobic interaction, electrostatics interaction, π-π interactions as well as complexation processes. Furthermore, we demonstrate exceptional stability of Fe/Zn@WBC across a broad pH range (pH = 3-11), co-existing ions presence along with humic acid under various real water conditions while maintaining high removal efficiency. This study presents an advanced biochar adsorbent, Fe/Zn@WBC, with efficient adsorption capacity and easy preparation. Through three regeneration cycles via pyrolysis method, it demonstrates excellent pyrolysis regeneration capabilities with an average removal efficiency of 92.02%. The magnetic properties enable rapid separation facilitated by magnetic analysis. By elucidating the efficacy and mechanistic foundations of Fe/Zn@WBC, this research significantly contributes to the field of environmental remediation by providing a scalable solution for IMI removal and enhancing scientific understanding of bimetallic oxides-hydrophilic organic pollutant interactions.
Collapse
Affiliation(s)
- Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Jialin Lv
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Rupert Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Qiang Fu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Zulin Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Xiaolong Dong
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Xiaohu Fan
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| |
Collapse
|
2
|
Wang Y, Luo J, Qin J, Huang Y, Ke T, Luo Y, Yang M. Efficient removal of phytochrome using rice straw-derived biochar: Adsorption performance, mechanisms, and practical applications. BIORESOURCE TECHNOLOGY 2023; 376:128918. [PMID: 36940871 DOI: 10.1016/j.biortech.2023.128918] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Rice straw derived biochar was fabricated and applied as a purification agent. The adsorption kinetics, isotherms, and thermodynamics for adsorbates were determined using the biochar. Adsorption kinetics and isotherms were best fitted by the pseudo-second order and Langmuir models. Biochar could effectively remove chlorophyll in 9 different solutions. Biochar was employed as a clean-up reagent for 149 pesticides detection, which revealed that biochar had a higher phytochrome removal capacity than graphitized carbon black and 123 pesticides had satisfactory recovery values. The biochar was prepared into a sample pad by electrospinning and was then used for online sample clean-up in a test strip, and it showed high ability of removing phytochrome and improving detection sensitivity. Thus, biochar could be applied as a purification agent to remove pigmentation, making it a promising candidate not only for sample pretreatment but also in the fields of food, agriculture and environment.
Collapse
Affiliation(s)
- Yudan Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jia'an Qin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ying Huang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Tongwei Ke
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Yawen Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
3
|
Sun H, He J, Liu Y, Ji X, Wang G, Yang X, Zhang Y. Removal Performance and Mechanism of Emerging Pollutant Chloroquine Phosphate from Water by Iron and Magnesium Co-Modified Rape Straw Biochar. Molecules 2023; 28:molecules28083290. [PMID: 37110522 PMCID: PMC10146006 DOI: 10.3390/molecules28083290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Chloroquine phosphate (CQP) is effective in treating coronavirus disease 2019 (COVID-19); thus, its usage is rapidly increasing, which may pose a potential hazard to the environment and living organisms. However, there are limited findings on the removal of CQP in water. Herein, iron and magnesium co-modified rape straw biochar (Fe/Mg-RSB) was prepared to remove CQP from the aqueous solution. The results showed that Fe and Mg co-modification enhanced the adsorption efficiency of rape straw biochar (RSB) for CQP with the maximum adsorption capacity of 42.93 mg/g (at 308 K), which was about two times higher than that of RSB. The adsorption kinetics and isotherms analysis, as well as the physicochemical characterization analysis, demonstrated that the adsorption of CQP onto Fe/Mg-RSB was caused by the synergistic effect of pore filling, π-π interaction, hydrogen bonding, surface complexation, and electrostatic interaction. In addition, although solution pH and ionic strength affected the adsorption performance of CQP, Fe/Mg-RSB still had a high adsorption capability for CQP. Column adsorption experiments revealed that the Yoon-Nelson model better described the dynamic adsorption behavior of Fe/Mg-RSB. Furthermore, Fe/Mg-RSB had the potential for repeated use. Therefore, Fe and Mg co-modified biochar could be used for the remediation of CQP from contaminated water.
Collapse
Affiliation(s)
- Hongwei Sun
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| | - Jinjin He
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| | - Yucan Liu
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Xianguo Ji
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Gang Wang
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| | - Xiaoyong Yang
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| | - Yanxiang Zhang
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
4
|
Cao N, Ji J, Li C, Yuan M, Guo X, Zong X, Li L, Ma Y, Wang C, Pang S. Rapid and efficient removal of multiple aqueous pesticides by one-step construction boric acid modified biochar. RSC Adv 2023; 13:8765-8778. [PMID: 36936844 PMCID: PMC10018371 DOI: 10.1039/d2ra07684e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Tricyclazole, propiconazole, imidacloprid, and thiamethoxam are commonly used pesticides in paddy fields. It is necessary and practical to remove pesticides from the water environment because the low utilization rate of pesticides will produce residues in the water environment. It is known that there are few studies on the preparation of biochar adsorption pesticides by the walnut shell and few studies on the removal of tricyclazole and propiconazole. Based on this, this paper used the walnut shell as raw material and boric acid as an activator to prepare biochar by the one-step method. The boric acid modified walnut shell biochar (WAB4) with a specific surface area of 640.6 m2 g-1, exhibited the high adsorption capacity of all four pesticides (>70%) at pH 3-9. The adsorption capacities of tricyclazole, propiconazole, imidacloprid, and thiamethoxam were 171.67, 112.27, 156.40, and 137.46 mg g-1, respectively. The adsorption kinetics fitted the pseudo-second-order kinetic model and the adsorption isotherm curves conformed to the Freundlich isotherm model. The adsorption of pesticides by WAB4 was associated with hydrogen bonding, pore filling, hydrophobic effects, and π-π interactions. More significantly, WAB4 has excellent adsorption capacity compared to other adsorbents for real water samples. Finally, walnut shell biochar has no significant acute toxicity to Daphnia magna. This work shows that walnut shell-based biochar has a good effect on the removal of pesticides at a wide range of pH and is economical and safe, providing a new idea for the removal of pesticides in water.
Collapse
Affiliation(s)
- Niannian Cao
- Department of Applied Chemistry, College of Science, China Agricultural University Beijing 100193 China
| | - Jiawen Ji
- Department of Applied Chemistry, College of Science, China Agricultural University Beijing 100193 China
| | - Changsheng Li
- Department of Applied Chemistry, College of Science, China Agricultural University Beijing 100193 China
| | - Meng Yuan
- Department of Applied Chemistry, College of Science, China Agricultural University Beijing 100193 China
| | - Xuanjun Guo
- Department of Applied Chemistry, College of Science, China Agricultural University Beijing 100193 China
| | - Xingxing Zong
- State Key Laboratory of NBC Protection for Civilians Beijing 102205 China
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilians Beijing 102205 China
| | - Yongqiang Ma
- Department of Applied Chemistry, College of Science, China Agricultural University Beijing 100193 China
| | - Chen Wang
- State Key Laboratory of NBC Protection for Civilians Beijing 102205 China
| | - Sen Pang
- Department of Applied Chemistry, College of Science, China Agricultural University Beijing 100193 China
| |
Collapse
|
5
|
Adsorption Performance of Methylene Blue by KOH/FeCl3 Modified Biochar/Alginate Composite Beads Derived from Agricultural Waste. Molecules 2023; 28:molecules28062507. [PMID: 36985479 PMCID: PMC10052162 DOI: 10.3390/molecules28062507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
In this study, high-performance modified biochar/alginate composite bead (MCB/ALG) adsorbents were prepared from recycled agricultural waste corncobs by a high-temperature pyrolysis and KOH/FeCl3 activation process. The prepared MCB/ALG beads were tested for the adsorption of methylene blue (MB) dye from wastewater. A variety of analytical methods, such as SEM, BET, FTIR and XRD, were used to investigate the structure and properties of the as-prepared adsorbents. The effects of solution pH, time, initial MB concentration and adsorption temperature on the adsorption performance of MCB/ALG beads were discussed in detail. The results showed that the adsorption equilibrium of MB dye was consistent with the Langmuir isothermal model and the pseudo-second-order kinetic model. The maximum adsorption capacity of MCB/ALG−1 could reach 1373.49 mg/g at 303 K. The thermodynamic studies implied endothermic and spontaneous properties of the adsorption system. This high adsorption performance of MCB/ALG was mainly attributed to pore filling, hydrogen bonding and electrostatic interactions. The regeneration experiments showed that the removal rate of MB could still reach 85% even after five cycles of experiments, indicating that MCB/ALG had good reusability and stability. These results suggested that a win-win strategy of applying agricultural waste to water remediation was feasible.
Collapse
|
6
|
Ultrasonic Activated Biochar and Its Removal of Harmful Substances in Environment. Microorganisms 2022; 10:microorganisms10081593. [PMID: 36014011 PMCID: PMC9412848 DOI: 10.3390/microorganisms10081593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
Biochar has been widely used in the fields of environment and energy, and green preparation can make biochar-based materials more environmentally friendly. Particularly, in the low-temperature pyrolysis of biochar, labile C with low biological toxicity is the main influencing factor of bacteria in soil. Therefore, it is worth studying to develop the fabrication technology of low-temperature pyrolysis biochar with rich pore structure. The mechanical effect of ultrasonic cavitation is considered to be an effective strategy for the preparation of biochar. However, the sonochemical effects on biochar remain to be studied. In this review, ultrasonic modification and ultrasonic-chemical modification on biochar has been reviewed. Metal oxide/biochar composites can also be obtained by an ultrasonic-chemical method. It is worth mentioning that there have been some reports on the regeneration of biochar by ultrasound. In addition to ultrasonic preparation of biochar, ultrasound can also trigger the sonocatalytic performance and promote the adsorption ability of biochar for the removal of harmful substances. The catalytic mechanism of ultrasound/biochar needs to be further investigated. For application, biochar prepared by ultrasound has been used for the removal of heavy metals in water, the adsorption of carbon dioxide, and soil remediation.
Collapse
|
7
|
Xu H, Xie T, Ye J, Wu Q, Wang D, Cai D. Highly Efficient and Simultaneous Removal of Cr(VI) and Imidacloprid through a Ferrocene-Modified MIL-100(Fe) Composite from an Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6579-6591. [PMID: 35576243 DOI: 10.1021/acs.langmuir.2c00417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A novel nanocomposite [Fc-MIL-100(Fe)] was constructed by combining ferrocene (Fc) with the porous structural metal-organic framework [MIL-100(Fe)]. The proposed composite material could simultaneously and efficiently remove hexavalent chromium [Cr(VI)] and imidacloprid and reduced strongly noxious Cr(VI) to weakly noxious trivalent chromium [Cr(III)]. The removal efficiencies of the composite material for Cr(VI) and imidacloprid could reach 95% after 15 h. The adsorption process was determined by kinetics, isotherms, and thermodynamics. The results demonstrated that the adsorption kinetics of Cr(VI) followed the pseudo-second-order model mainly by chemisorption; meanwhile, the adsorption of imidacloprid by the material conformed to the pseudo-first-order kinetics, which indicated that physical adsorption was the main process. Additionally, the intraparticle diffusion model revealed that the uptake of imidacloprid and Cr(VI) occurred via intraparticle diffusion at the composite material. The adsorption procedure for Cr(VI) was fitted to the Langmuir model (R2 = 0.995) via monolayer adsorption, and that for imidacloprid was fitted to the Freundlich model (R2 = 0.995) due to multilayer or heterogeneous adsorption. The thermodynamic research confirmed that the adsorption procedure was exothermic and spontaneous. Infrared spectroscopy, X-ray photoelectron spectra, and the pH effect implied that intermolecular hydrogen bonding and electrostatic interaction played a crucial role during the removal process. Fc-MIL-100(Fe) also exhibited long-term stability and satisfactory regeneration and reusability. Therefore, this method may enhance an environmentally friendly and prospective approach for concurrently removing imidacloprid and Cr(VI) from wastewater.
Collapse
Affiliation(s)
- He Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Tao Xie
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jinghong Ye
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qingchuan Wu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Dongfang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Dongqing Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
8
|
Adsorption Kinetics of Imidacloprid, Acetamiprid and Methomyl Pesticides in Aqueous Solution onto Eucalyptus Woodchip Derived Biochar. MINERALS 2022. [DOI: 10.3390/min12050528] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This work reports the application of a biochar (BC) derived from eucalyptus wood chips to remove pesticides (imidacloprid, acetamiprid and methomyl) from water. The pseudo-second order kinetic adsorption model is the best fit describing the adsorption of pesticides on BC. Furthermore, the Langmuir model correlated well with the adsorption isotherm data for acetamiprid and methomyl, while the Freundlich model was selected to explain the adsorption of imidacloprid on BC. The maximum adsorption capacities for methomyl, imidacloprid and acetamiprid on the BC material are 32.42, 14.75 and 4.87 mg g−1, respectively. The highest adsorption capacity of methomyl on the BC surface could be the result of multilayer adsorption suggested by the adsorption isotherm studies, with imidacloprid (or acetamiprid) monolayer being adsorbed on the BC surface. The structure, functional groups of pesticides, including their polarity, all played an important role contributing to the performance of biochar sorbent. Preferable interactions between the studied pesticides and the BC surface may include π-π interactions and hydrogen bonding. The steric aromatic entity in adsorbed imidacloprid and acetamiprid on the BC surface may hinder the possibility of other pesticide molecules approaching the available sorption sites on the surface.
Collapse
|