1
|
Wang J, Lin Q, Qiu C, McClements DJ, Ji H, Jin Z. Composite biopolymer foams fabricated from natural aldehyde functionalized chitosan-whey protein amyloid fibrils: Application for removal of phthalate esters from water. Carbohydr Polym 2025; 348:122789. [PMID: 39562067 DOI: 10.1016/j.carbpol.2024.122789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 11/21/2024]
Abstract
In this work, composite biopolymer foams from chitosan and whey isolate protein amyloid fibrils were prepared for the removal of phthalate esters from water. Natural aldehyde functionalization enhanced the affinity for dibutyl phthalate (DBP), with citral being the most effective. The citral-grafted foams (WCGC) had tunable hydrophobicity, strong mechanical properties, and good water stability. WCGC1.5 foam exhibited a high removal efficiency (96.06 %) of DBP. The adsorption process reached adsorption equilibrium rapidly within 8 h and could be described by pseudo-second-order kinetic and Freundlich isotherm models, indicating a non-homogeneous and chemisorptive sorption process. The maximum adsorption capacity for DBP reached 332.42 mg/g. Moreover, DBP adsorption could be enhanced in alkaline environment and the removal efficiency increased to 98.27 % at pH 10. The removal efficiency of DBP by WCGC1.5 remained above 85 % after the five adsorption-desorption cycles. WCGC1.5 also showed broad-spectrum adsorption behavior, with strong affinity and removal efficiency for six common plasticizers, including DIBP (85.97 %), DPP (91.7 %), DHXP (99.1 %), DEHP (99.09 %), DNOP (91.6 %) and BBP (89.88 %).
Collapse
Affiliation(s)
- Jilong Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qianzhu Lin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01060, United States
| | - Hangyan Ji
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Taleb MA, Kumar R, Barakat MA, Almeelbi TB, Al-Makishah NH. Facile synthesis of reduced graphene oxide/carbon/calcium alginate aerogel for the removal of pharmaceutical pollutants. Int J Biol Macromol 2025; 296:139688. [PMID: 39793792 DOI: 10.1016/j.ijbiomac.2025.139688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/26/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Pharmaceuticals are the new emerging challenge pollutants to removal from the aquatic environments. In this study, a series of reduced graphene oxide/carbon/calcium alginate (rGO/C/CA) aerogel was fabricated using an environmentally friendly freeze-drying method. The surface properties including surface textures, elemental contents, crystal structures, and functional groups of rGO/C/CA aerogel were investigated. The aerogels were utilized for the adsorptive removal of oxytetracycline (OTC) and amitriptyline HCl (AMT) drugs in contaminated aquatic environments. Results showed that rGO/C/CA aerogel had much higher adsorption efficiency of OTC and AMT compared to other pristine and binary aerogels due to the enhanced surface properties and synergetic effect of functional groups. The equilibrium data were best fitted to the Toth isotherm model for both OTC and AMT and the mathematical interpretation of fitting data suggests a monolayer adsorption for both drugs. The results demonstrated that rGO/C/CA aerogel could be a reusable adsorbent for eliminating wastewater related pharmaceutical pollutants.
Collapse
Affiliation(s)
- Md Abu Taleb
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rajeev Kumar
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - M A Barakat
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Talal B Almeelbi
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Naief H Al-Makishah
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Kumar V, Sharma N, Panneerselvam B, Dasarahally Huligowda LK, Umesh M, Gupta M, Muzammil K, Zahrani Y, Malmutheibi M. Lignocellulosic biomass for biochar production: A green initiative on biowaste conversion for pharmaceutical and other emerging pollutant removal. CHEMOSPHERE 2024; 360:142312. [PMID: 38761824 DOI: 10.1016/j.chemosphere.2024.142312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/25/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
Lignocellulosic waste generation and their improper disposal has accelerated the problems associated with increased greenhouse gas emissions and associated environmental pollution. Constructive ways to manage and mitigate the pollution associated with lignocellulosic waste has propelled the research on biochar production using lignocellulose-based substrates. The sustainability of various biochar production technologies in employing lignocellulosic biomass as feedstock for biochar production not only aids in the lignocellulosic biomass valorization but also helps in carbon neutralization and carbon utilization. Functionalization of biochar through various physicochemical methods helps in improving their functional properties majorly by reducing the size of the biochar particles to nanoscale and modifying their surface properties. The usage of engineered biochar as nano adsorbents for environmental applications like dye absorption, removal of organic pollutants and endocrine disrupting compounds from wastewater has been the thrust areas of research in the past few decades. This review presents a comprehensive outlook on the up-to-date research findings related to the production and engineering of biochar from lignocellulosic biomass and their applications in environmental remediation especially with respect to wastewater treatment. Further a detailed discussion on various biochar activation methods and the future scope of biochar research is presented in this review work.
Collapse
Affiliation(s)
- Vinay Kumar
- Biomaterials and Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam, 602105, India.
| | - Neha Sharma
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam, 602105, India
| | - Balamurugan Panneerselvam
- Center of Excellence in Interdisciplinary Research for Sustainable Development, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Community Medicine, Saveetha Medical College, SIMATS, Chennai, 602105, India
| | | | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, 560029, Karnataka, India
| | - Manish Gupta
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, 174103, India
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| | - Yousef Zahrani
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| | - Musa Malmutheibi
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| |
Collapse
|
4
|
Cheng M, Li R, Du X, Zhang Z, Zhang H. Highly efficient removal of diclofenac sodium with polystyrene supported ionic liquid. ENVIRONMENTAL TECHNOLOGY 2024; 45:3276-3282. [PMID: 37184044 DOI: 10.1080/09593330.2023.2214856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/11/2023] [Indexed: 05/16/2023]
Abstract
ABSTRACTDiclofenac sodium (DS) is now recognized as an emerging pollutant, and is one of the most commonly discovered pharmaceuticals in water due to its extensive application in the clinic. This study examined the adsorption performance of a polystyrene-supported ionic liquid material (PS-[Nim][Cl]) for the removal of diclofenac sodium (DS) from water. The data from this study showed that maximum removal of DS can be achieved even in conditions with significant pH and temperature fluctuations. The adsorption process was rapid, more than 90% of DS could be removed within the first 10 min and adsorption equilibrium could be reached in just 30 min with a high removal efficiency (>99.9%). Adsorption reached saturation with a maximum adsorption capacity of approximately 785.2 mg/g. Moreover, the presence of K+, Na+, Ca2+, Mg2+, Cl-, and H2PO4- ions had little influence on DS adsorption, even when concentrations of these ions were 10,000 times higher than that of DS in water samples. The adsorbent also showed promising performance for the treatment of environmental water samples and groundwater containing DS.
Collapse
Affiliation(s)
- Meng Cheng
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People's Republic of China
| | - Ruihua Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People's Republic of China
| | - Xin Du
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People's Republic of China
| | - Zihao Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People's Republic of China
| | - Hao Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People's Republic of China
| |
Collapse
|
5
|
Xie J, Liu M, He M, Liu Y, Li J, Yu F, Lv Y, Lin C, Ye X. Ultra-efficient adsorption of diclofenac sodium on fish-scale biochar functionalized with H 3PO 4 via synergistic mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121226. [PMID: 36754196 DOI: 10.1016/j.envpol.2023.121226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Developing safe and efficient diclofenac sodium (DS) removal technology has become a critical issue. This study synthesized the fish-scale biochar by co-pyrolysis of fish scale and phosphoric acid (H3PO4). In addition to increasing the specific surface area and pore volume of fish-scale biochar, H3PO4 assisted in the formation of Graphitic N and sp2 C, as well as reacting with C═O groups to form a significant number of phosphorus-containing groups. All these functional groups could act as major active sites for DS adsorption. Adsorption data could well fit pseudo-second-order and Langmuir models. The maximum adsorption capacity of FSB600-15 for DS was 967.1 mg g-1, which was much better than that reported in the literature. Under the synergistic effect of various mechanisms (pore-filling effect, electrostatic attraction, H-bonding, π-π, and n-π electron donor-acceptor interactions), the DS ultra-efficient adsorption on FSB600-15 was realized. Meanwhile, the DS adsorption by FSB600-15 was an endothermic, spontaneous, and entropy-increasing process. Furthermore, the DS adsorption capacity was more than 426.5 mg g-1 in the actual water, which was sufficient for practical applications.
Collapse
Affiliation(s)
- Jia Xie
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, China
| | - Minghua Liu
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China; College of Environmental and Biological Engineering, Putian University, Putian, 351100, Fujian, China.
| | - Miao He
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Yifan Liu
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Jian Li
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, China
| | - Fangxia Yu
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, China
| | - Yuancai Lv
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Chunxiang Lin
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoxia Ye
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
6
|
Agustin MB, Lehtonen M, Kemell M, Lahtinen P, Oliaei E, Mikkonen KS. Lignin nanoparticle-decorated nanocellulose cryogels as adsorbents for pharmaceutical pollutants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117210. [PMID: 36608603 DOI: 10.1016/j.jenvman.2022.117210] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Adsorption is a relatively simple wastewater treatment method that has the potential to mitigate the impacts of pharmaceutical pollution. This requires the development of reusable adsorbents that can simultaneously remove pharmaceuticals of varying chemical structure and properties. Here, the adsorption potential of nanostructured wood-based adsorbents towards different pharmaceuticals in a multi-component system was investigated. The adsorbents in the form of macroporous cryogels were prepared by anchoring lignin nanoparticles (LNPs) to the nanocellulose network via electrostatic attraction. The naturally anionic LNPs were anchored to cationic cellulose nanofibrils (cCNF) and the cationic LNPs (cLNPs) were combined with anionic TEMPO-oxidized CNF (TCNF), producing two sets of nanocellulose-based cryogels that also differed in their overall surface charge density. The cryogels, prepared by freeze-drying, showed layered cellulosic sheets randomly decorated with spherical lignin on the surface. They exhibited varying selectivity and efficiency in removing pharmaceuticals with differing aromaticity, polarity and ionic characters. Their adsorption potential was also affected by the type (unmodified or cationic), amount and morphology of the lignin nanomaterials, as well as the pH of the pharmaceutical solution. Overall, the findings revealed that LNPs or cLNPs can act as functionalizing and crosslinking agents to nanocellulose-based cryogels. Despite the decrease in the overall positive surface charge, the addition of LNPs to the cCNF-based cryogels showed enhanced adsorption, not only towards the anionic aromatic pharmaceutical diclofenac but also towards the aromatic cationic metoprolol (MPL) and tramadol (TRA) and neutral aromatic carbamazepine. The addition of cLNPs to TCNF-based cryogels improved the adsorption of MPL and TRA despite the decrease in the net negative surface charge. The improved adsorption was attributed to modes of removal other than electrostatic attraction, and they could be π-π aromatic ring or hydrophobic interactions brought by the addition of LNPs or cLNPs. However, significant improvement was only found if the ratio of LNPs or cLNPs to nanocellulose was 0.6:1 or higher and with spherical lignin nanomaterials. As crosslinking agents, the LNPs or cLNPs affected the rheological behavior of the gels, and increased the firmness and decreased the water holding capacity of the corresponding cryogels. The resistance of the cryogels towards disintegration with exposure to water also improved with crosslinking, which eventually enabled the cryogels, especially the TCNF-based one, to be regenerated and reused for five cycles of adsorption-desorption experiment for the model pharmaceutical MPL. Thus, this study opened new opportunities to utilize LNPs in providing nanocellulose-based adsorbents with additional functional groups, which were otherwise often achieved by rigorous chemical modifications, at the same time, crosslinking the nanocellulose network.
Collapse
Affiliation(s)
- Melissa B Agustin
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, P.O. Box 66, FI-00014, University of Helsinki, Finland.
| | - Mari Lehtonen
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, P.O. Box 66, FI-00014, University of Helsinki, Finland
| | - Marianna Kemell
- Department of Chemistry, Faculty of Science, P.O. Box 55, FI-00014, University of Helsinki, Finland
| | - Panu Lahtinen
- VTT, Technical Research Centre of Finland, P.O. Box 1000, FIN-02044, VTT, Finland
| | - Erfan Oliaei
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden
| | - Kirsi S Mikkonen
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, P.O. Box 66, FI-00014, University of Helsinki, Finland; Helsinki Institute of Sustainability Science, P.O. Box 65, FI-00014, University of Helsinki, Finland
| |
Collapse
|