1
|
Jiang Y, Jiang Y, Xu Y, Sun X, Cheng S, Liu Y, Dou X, Yang Z. Ce-based three-dimensional mesoporous microspheres with Mn homogeneous incorporation for toluene oxidation. J Colloid Interface Sci 2024; 670:785-797. [PMID: 38796358 DOI: 10.1016/j.jcis.2024.04.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/28/2024]
Abstract
Ce-based three-dimensional (3D) mesoporous microspheres with Mn homogeneous incorporation were synthesized. The CeMn-0.4, characterized by a Ce/Mn molar ratio of 6:4, demonstrated exceptional catalytic activity and stability. The formation of CeMn solid solution strengthened the Ce-Mn interaction, yielding higher concentrations of Ce3+ and Mn4+. Mn4+ initiated toluene preliminary activation owing to its robust oxidative properties, while Ce3+ contributed to oxygen vacancy generation, enhancing the activation of gaseous oxygen and lattice oxygen mobility. Integrating experiments and Density Functional Theory (DFT) calculations elucidated the oxygen reaction mechanisms. A portion of oxygen was converted into surface reactive oxygen species (Oads) that directly oxidized toluene. Additionally, the presence of oxygen vacancies promoted the participation of oxygen in toluene oxidation by converting it into lattice oxygen, which was crucial for the deep oxidation of toluene. Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS) indicated the accumulation of benzene-ring intermediates on the catalyst surface hindered continuous toluene oxidation. Thus, the abundant oxygen vacancies in CeMn-0.4 played a pivotal role in sustaining the oxidation process by bolstering the activation of gaseous oxygen and the mobility of lattice oxygen.
Collapse
Affiliation(s)
- Yinsheng Jiang
- College of New Energy, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266580, China; Qingdao Engineering Research Center of Efficient and Clean Utilization of Fossil Energy, Qingdao 266580, China
| | - Ye Jiang
- College of New Energy, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266580, China; Qingdao Engineering Research Center of Efficient and Clean Utilization of Fossil Energy, Qingdao 266580, China.
| | - Yichao Xu
- College of New Energy, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266580, China; Qingdao Engineering Research Center of Efficient and Clean Utilization of Fossil Energy, Qingdao 266580, China
| | - Xin Sun
- College of New Energy, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266580, China; Qingdao Engineering Research Center of Efficient and Clean Utilization of Fossil Energy, Qingdao 266580, China
| | - Siyuan Cheng
- College of New Energy, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266580, China; Qingdao Engineering Research Center of Efficient and Clean Utilization of Fossil Energy, Qingdao 266580, China
| | - Yanan Liu
- College of New Energy, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266580, China; Qingdao Engineering Research Center of Efficient and Clean Utilization of Fossil Energy, Qingdao 266580, China
| | - Xiao Dou
- College of New Energy, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266580, China; Qingdao Engineering Research Center of Efficient and Clean Utilization of Fossil Energy, Qingdao 266580, China
| | - Zhengda Yang
- College of New Energy, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266580, China; Qingdao Engineering Research Center of Efficient and Clean Utilization of Fossil Energy, Qingdao 266580, China
| |
Collapse
|
2
|
Yang Y, Li J, Luo Z, Zhang L, Wang Y, Liu Z, Ge C, Xie Y, Zhao P, Fei J. 2D/3D hierarchical porous structure of mNPC/SMOH@C to construct an electrochemical sensor for the simultaneous determination of p-acetylaminophenol and p-aminophenol. Anal Chim Acta 2024; 1320:343021. [PMID: 39142790 DOI: 10.1016/j.aca.2024.343021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND As persistent organic pollutants (POPs), the accumulation of p-acetylaminophenol (PAT) and p-aminophenol (PAP) in water can seriously damage the health of plants and animals, ultimately leading to threats to human health and safety. Electrochemical sensors have the advantages of being fast, inexpensive, and accurate compared to the complex, expensive, and cumbersome conventional analytical methods. In this study, we designed and synthesized composites with two-dimensional/three-dimensional (2D/3D) porous structures to construct an efficient electrochemical platform for the simultaneous detection of PAT and PAP. RESULTS In this work, a novel 3D foamy birnessite Na0.55Mn2O4·1.5H2O@C (SMOH@C) was synthesized, which was composited with 2D ordered mesoporous nanosheets (mNPC) to construct electrochemical sensors detecting PAT and PAP simultaneously. The prepared 2D/3D porous structure of mNPC/SMOH@C increased the exposure of active sites due to its large specific surface area. The introduction of a 3D carbon skeleton altered the charge transfer rate of SMOH@C, and the rich pore structure and oxygen-rich vacancies created favorable conditions for the diffusion and adsorption of PAP and PAT, which enabled the sensitive detection of PAT and PAP. The constructed mNPC/SMOH@C electrochemical sensor could simultaneously detect PAT (1 × 10-7 - 1 × 10-4 M) and PAP (5 × 10-8 - 1 × 10-4 M) with detection limits of 20.4 nM and 30.1 nM, respectively. The sensor has good repeatability (RSD <4 %) and reproducibility (RSD <4 %), and satisfactory recoveries (96.7-102.8 %) were obtained in the analysis of natural water samples. SIGNIFICANCE In this paper, for the first time, we present the synthesis of 3D foam birnessite and its composite with mNPC for the electrochemical simultaneous detection of PAT and PAP. Our proposed strategy for fabricating 2D/3D porous composites lays the foundation for the design and synthesis of other porous materials. In addition, this study provides new ideas for developing efficient and practical electrochemical sensors for detecting pollutants in aquatic environments.
Collapse
Affiliation(s)
- Yaqi Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China; College of Chemistry and Materials Engineering, Huaihua University, Huaihua, 418000, PR China
| | - Jiejun Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Zhiwang Luo
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Li Zhang
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, 418000, PR China
| | - Yilin Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Zhifang Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Caiyu Ge
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Yixi Xie
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China; Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, 411105, PR China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, PR China.
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, PR China.
| |
Collapse
|
3
|
Li J, Chen J, Zeng J, Xie H, Zhou G. Tuning the crystallinity of the MnO x catalysts to promote toluene catalytic oxidation. ENVIRONMENTAL TECHNOLOGY 2024:1-13. [PMID: 38648336 DOI: 10.1080/09593330.2024.2342573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
In this paper, the MnOx catalysts with excellent toluene oxidation performance were prepared by a simple precipitation method. The physicochemical properties of the prepared MnOx catalysts were investigated by XRD, BET, H2-TPR, O2-TPD and XPS. The obtained results revealed that the crystallinity of the prepared MnOx catalysts could be effectively regulated by changing the (NH4)2CO3/Mn(NO3)2 molar ratio, and thus affecting the oxygen vacancy concentration of the prepared MnOx catalysts. The prepared MnOx-4 catalyst with the (NH4)2CO3/Mn(NO3)2 molar ratio of 4.0 had the poor crystallinity and small grain size, which effectively promoted the oxygen defects in the MnOx catalyst to be formed. At the same time, the MnOx-4 catalyst had a large specific surface area, the highest low temperature reducibility and the largest number of oxygen vacancies and surface adsorbed oxygen species, which allowed more surface oxygen species to participate in the redox reaction, and promoted the toluene deep oxidation. Therefore, when the (NH4)2CO3/Mn(NO3)2 molar ratio was 4.0, the prepared MnOx-4 catalyst exhibited an excellent toluene catalytic oxidation performance and robust catalytic stability. What's more, the toluene oxidation conversion on the MnOx-4 catalyst reached 99% at 230°C, and the MnOx-4 catalyst showed excellent resistance to water vapour.
Collapse
Affiliation(s)
- Jingyi Li
- Chongqing Key Laboratory of Catalysis and Environmental New Materials, Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Department of Chemical Engineering, Chongqing Technology and Business University, Chongqing, People's Republic of China
| | - Jiyan Chen
- Chongqing Key Laboratory of Catalysis and Environmental New Materials, Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Department of Chemical Engineering, Chongqing Technology and Business University, Chongqing, People's Republic of China
| | - Jia Zeng
- Chongqing Key Laboratory of Catalysis and Environmental New Materials, Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Department of Chemical Engineering, Chongqing Technology and Business University, Chongqing, People's Republic of China
| | - Hongmei Xie
- Chongqing Key Laboratory of Catalysis and Environmental New Materials, Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Department of Chemical Engineering, Chongqing Technology and Business University, Chongqing, People's Republic of China
| | - Guilin Zhou
- Chongqing Key Laboratory of Catalysis and Environmental New Materials, Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Department of Chemical Engineering, Chongqing Technology and Business University, Chongqing, People's Republic of China
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing, People's Republic of China
| |
Collapse
|
4
|
Du X, Tong W, Zhou X, Luo J, Liu Y, Wang Y, Li P, Zhang Y. An efficient approach for the treatment of radioactive waste perfluoropolyether lubricants via a synergistic effect of thermal catalysis and immobilization. J Environ Sci (China) 2024; 136:512-522. [PMID: 37923460 DOI: 10.1016/j.jes.2023.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 11/07/2023]
Abstract
Perfluoropolyether (PFPE) lubricants are a kind of high-molecular polymer with many excellent properties. However, the use of PFPEs in the nuclear industry can lead to partial decomposition and carrying radionuclides, resulting in a large amount of radioactive waste PFPE lubricants annually. Moreover, radioactive waste PFPE lubricants are difficult to be effectively treated due to their high stability, the risk of possible leakage of radionuclides, and hypertoxic fluorine-containing by-products. In this study, without any precedent, a strategy of MnO2-catalyzed decomposition and Na2CO3-immobilized conversion was proposed for PFPE lubricant decomposition and fluorine immobilization simultaneously based on the Lewis acid-base and oxygen vacancies concept. A high fluorine conversion efficiency of 95.4% was achieved. Meanwhile, the mechanism of decomposition suggested that MnO2 mainly provided Lewis acid sites and attacked the (basic) fluorine or oxygen atoms in PFPE molecules. The decomposition of PFPE chains was proceed down and volatile fluorine-containing gas was released by partial electron transfer, intramolecular disproportionation reaction, and unzipping fashion. Subsequently, gas by-products could be further oxidized and then immobilized into fluoride salts by carbonate solid absorbents. Overall, this study provides a simple, safe, and potentially practical strategy for the harmless conversion of refractory fluorinated organic wastes, especially perfluoropolymers.
Collapse
Affiliation(s)
- Xinhang Du
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Wenhua Tong
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xinyu Zhou
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jia Luo
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yuqiu Liu
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yabo Wang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Panyu Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
5
|
Bai B, Huang Y, Chen J, Lei J, Wang S, Wang J. Ultrathin MnO 2 with strong lattice disorder for catalytic oxidation of volatile organic compounds. J Colloid Interface Sci 2024; 653:1205-1216. [PMID: 37797496 DOI: 10.1016/j.jcis.2023.09.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/17/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Catalytic oxidation proves the most promising technology for volatile organic compounds (VOCs) abatement. Lattice disorder plays a crucial role in the catalytic activity of catalysts due to the exposure of more active sites. Inspired by this, we successfully prepared a series of ε-MnO2 with different lattice disorder defects via several simple methods and applied them to the catalytic oxidation of two typical VOCs (toluene and acetone). Various characterizations and performance tests confirm that the ultrathin (1.4-1.8 nm) structure and strong lattice disorder can enhance the low temperature reduction and reactive oxygen species, so that MnO2-R exhibits excellent toluene and acetone oxidation activities. In-situ DRIFTS tests were carried out to detect reaction intermediates in the toluene and acetone oxidation process on the catalyst surface. Moreover, we propose a possible synergistic mechanism for toluene and acetone mixtures catalytic oxidation. This work reveals the important role of lattice disorder defects in the catalytic oxidation of VOCs on Mn-based catalysts, and deepens the insights of the reaction path in toluene and acetone catalytic oxidation.
Collapse
Affiliation(s)
- Baobao Bai
- College of Environmental Science and Engineering, Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, Taiyuan University of Technology, Jinzhong 030600, China
| | - Ying Huang
- College of Environmental Science and Engineering, Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, Taiyuan University of Technology, Jinzhong 030600, China
| | - Jiajia Chen
- College of Environmental Science and Engineering, Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, Taiyuan University of Technology, Jinzhong 030600, China
| | - Juan Lei
- Department of Environmental and Safety Engineering, Taiyuan Institute of Technology, Taiyuan 030018, Shanxi, PR China.
| | - Shuang Wang
- College of Environmental Science and Engineering, Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, Taiyuan University of Technology, Jinzhong 030600, China.
| | - Jiancheng Wang
- College of Environmental Science and Engineering, Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, Taiyuan University of Technology, Jinzhong 030600, China
| |
Collapse
|
6
|
Wen T, Wang J, Zhang J, Long C. Regulating oxygen vacancies and hydroxyl groups of α-MnO 2 nanorods for enhancing post-plasma catalytic removal of toluene. ENVIRONMENTAL RESEARCH 2023; 238:117176. [PMID: 37729962 DOI: 10.1016/j.envres.2023.117176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/05/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Although nonthermal plasma (NTP) technology has high removal efficiency for volatile organic compounds (VOCs), it has limited carbon dioxide (CO2) selectivity, which hinders its practical application. In this study, α-MnO2 nanorods with tunable oxygen vacancies and hydroxyl groups were synthesized by two-step hydrothermal process to enhance their activity for deep oxidation of toluene. Hydrochloric acid (HCl) was used to assist in synthesis of α-MnO2 nanorods with tunable oxygen vacancies, furtherly, more hydroxyl groups were introduced to HCl-assisted synthesized α-MnO2 by K+ supplement. The results showed that the as-synthesized nanorods exhibited superior activity, improved by nearly 30% removal efficiency of toluene compared to pristine MnO2 at SIE = 339 J/L, and reaching high COx selectivity of 72% at SIE = 483 J/L, successfully promoting the deep oxidation of toluene. It was affirmed that oxygen vacancies played an important role in toluene conversion, improving the conversion of ozone (O3) and resulting in higher mobility of surface lattice oxygen species. Besides, the enhancement of deep oxidation performance was caused by the increase of hydroxyl groups concentration. In-situ DRIFTS experiments revealed that the adsorbed toluene on catalyst surface was oxidized to benzyl alcohol by surface lattice oxygen, and hydroxyl groups were also found participating in toluene adsorption. Overall, this study provides a new approach to designing catalysts for deep oxidation of VOCs.
Collapse
Affiliation(s)
- Tiancheng Wen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Jing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Jian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China; Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, China
| | - Chao Long
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| |
Collapse
|
7
|
Lu T, Zhang C, Du F, Zhang C, Zhang R, Liu P, Li J. Mutual inhibition effects on the synchronous conversion of benzene, toluene, and xylene over MnOx catalysts. J Colloid Interface Sci 2023; 641:791-802. [PMID: 36966568 DOI: 10.1016/j.jcis.2023.03.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
Advancing the practical application of catalytic oxidation technology demands for illustrating the synchronous conversion behavior of various volatile organic compounds (VOCs) over catalysts. Here, the mutual effects of benzene, toluene and xylene (BTX) were examined for their synchronous conversion on the surface of the MnO2 nanowire. Competitive adsorption of xylene (absorption energy (Eads): -0.889 eV) facilitated its prior conversion and impeded the oxidization of toluene and benzene over the catalyst. The turnover frequencies were 0.52 min-1 (benzene), 0.90 min-1 (toluene) and 2.42 min-1 (xylene) for mixed BTX conversion over the MnO2. Doping MnO2 with K+, Na+ and Ca2+ could enhance its ability to oxidize the individual VOCs but did not alter the conversion mechanism of mixed BTX over the catalyst. When reducing the competitive effects in the adsorption of BTX, the oxidation performance of catalysts would depend on their ability to oxidize toluene and benzene. K-MnO2 showed superior properties, i.e. specific surface area, highly low-valent Mn species, high lattice oxygen content, and abundant oxygen vacancy, and then exhibited superior performance during long-term operation (90% conversion in 800 min). The present study uncovered the co-conversion mechanism of multiple VOCs and significantly leveraged the catalytic oxidization technology for VOCs removal in practical application.
Collapse
|
8
|
Lu Y, Deng H, Pan T, Zhang C, He H. Thermal Annealing Induced Surface Oxygen Vacancy Clusters in α-MnO 2 Nanowires for Catalytic Ozonation of VOCs at Ambient Temperature. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9362-9372. [PMID: 36754841 DOI: 10.1021/acsami.2c21120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Catalytic ozonation has gained considerable interest in volatile organic compound (VOC) elimination due to its mild reaction conditions. However, the low activity and mineralization rate of VOCs over catalysts hinder its practical application. Herein, a series of α-MnO2 nanowire catalysts were prepared via thermal annealing treatment at various temperatures to tailor defect species. Numerous characterization techniques were used and combined to investigate the relationship between activity and microstructure. PALS and XAFS indicated that more unsaturated manganese and oxygen vacancies, especially surface oxygen vacancy clusters, were produced in α-MnO2 under the optimal high calcination temperature. As a result, MnO2-600 was found to exhibit the best-ever performance in toluene conversion (95%) and mineralization rate (89.5%) at 20 °C, making it a promising candidate for practical use. The roles of these defects in manipulating the reactive oxygen species of α-MnO2 were clarified by quantifying the amounts of reactive oxygen species by quenching experiments and density functional theory calculations. 1O2 and ·OH species generated in the vicinity of oxygen vacancy clusters, especially the dimer oxygen vacancy cluster, were identified as key oxygen species in the abatement of toluene. This study provides a facile method to engineer the microstructure of MnO2 by means of the manipulation of oxygen vacancies and an in-depth understanding of their roles in the catalytic ozonation of VOC.
Collapse
Affiliation(s)
- Yuqin Lu
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Deng
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Pan
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changbin Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hong He
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
9
|
Yang JN, Zhan J, Zhou H, Yang HH, Zhang SY, Yi X, Shan J, Liu Y. Enhanced oxidative ability, recyclability, water tolerance and aromatic resistance of α-MnO 2 catalyst for room-temperature formaldehyde oxidation via simple oxalic acid treatment. ENVIRONMENTAL RESEARCH 2023; 217:114938. [PMID: 36436556 DOI: 10.1016/j.envres.2022.114938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
To obtain a versatile formaldehyde oxidation material, simultaneously increasing the oxidative ability, recyclability and deactivation repellence (e.g., enduring the interference from moisture and aromatic compound omnipresent in indoor air) is of great significance. Herein, the above properties of α-MnO2 were synchronously updated via one step treatment in oxalic acid (H2C2O4), and an in-depth understanding of the surface properties-performance relationship was provided by systematic characterizations and designed experiments. Compared with the pristine sample, XPS, ESR, O2-TPD, CO-TPR and pyridine-IR reveal that H2C2O4 created substantial Mn3+ species on surface, exposing a higher coverage of oxygen vacancies that actively participated in the dissociative activation of gas-phase O2 into reactive chemically adsorbed oxygen (OC), and the abundant Lewis acid sites further enabled the effective O2 activation process. The large amount of oxygen OC promoted the HCHO-to-CO2 conversion and inhibited the accumulation of formate that required a high temperature of 170 °C to be eliminated, thus conspicuously improving the α-MnO2's thermal recovery. The combined H2O-TPD, H2O-preadsorbed CO-TPR, C6H6-TPD and C6H6-preadsorbed CO-TPR investigations shed light on the H2C2O4-induced water and benzene resistance. The notably weakened water and benzene binding strength with the H2C2O4-modified surface together with the unrestrained oxygen OC accounted for the outstanding anti-deactivation performance.
Collapse
Affiliation(s)
- Ji-Ning Yang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| | - Jingjing Zhan
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| | - Hao Zhou
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| | - Huan-Huan Yang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| | - Shi-Yu Zhang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| | - Xianliang Yi
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| | - Jiajia Shan
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| | - Yang Liu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
10
|
Lu T, Su F, Zhao Q, Li J, Zhang C, Zhang R, Liu P. Catalytic oxidation of volatile organic compounds over manganese-based oxide catalysts: Performance, deactivation and future opportunities. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Yi H, Wang Y, Diao L, Xin Y, Chai C, Cui D, Ma D. Ultrasonic treatment enhances the formation of oxygen vacancies and trivalent manganese on α-MnO 2 surfaces: Mechanism and application. J Colloid Interface Sci 2022; 626:629-638. [PMID: 35810702 DOI: 10.1016/j.jcis.2022.06.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 10/31/2022]
Abstract
Catalytic activity is the main obstacle limiting the application of peroxymonosulfate (PMS) activation on transition metal oxide catalysts in organic pollutant removal. Herein, ultrasonic treatment was applied to α-MnO2 to fabricate a new u-α-MnO2 catalyst for PMS activation. Dimethyl phthalate (DMP, 10 mg/L) was almost completely degraded within 90 min, and the pseudofirst-order rate constant for DMP degradation in the u-α-MnO2/PMS system was ∼7 times that in the initial α-MnO2/PMS system. The ultrasonic treatment altered the crystalline and pore structures of α-MnO2 and produced defects on the u-α-MnO2 catalyst. According to the XPS, TG, and EPR results, higher contents of trivalent Mn and oxygen vacancies (OVs) were produced on the catalyst surfaces. The OVs induced the decomposition of PMS to produce 1O2, which was identified as the main reactive oxygen species (ROS) responsible for DMP degradation. The u-α-MnO2 catalyst presented great reusability, especially by ultrasonic regeneration of OVs toward the used catalyst. This study provides new insights into regulating OVs generation and strengthening catalyst activity in the PMS activation process for its application in water purification.
Collapse
Affiliation(s)
- Hailing Yi
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanhao Wang
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China; Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Lingling Diao
- Chengyang Branch of Qingdao Ecological Environment Bureau, Qingdao 266109, China
| | - Yanjun Xin
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Chai
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Dejie Cui
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Dong Ma
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|