1
|
Jia H, Zhan Y, Zhu F, Chen X, Duan X, Zhang N, Liu J, Li Y. Design of multiple anti-fouling and honeycomb-like NH 2-AgBiS 2 @g-C 3N 4 hydrogel layer onto PAN fiber membrane for multicomponent pollutant-oil-water emulsion treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135941. [PMID: 39366045 DOI: 10.1016/j.jhazmat.2024.135941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/06/2024]
Abstract
Nano-structured hydrogel with unique anti-oil fouling property exhibits big advantage in oil/water separation, but its application in complex oily wastewater (contain oils, organic matter, bacteria, etc.) cleanup is hampered by the insufficient capabilities in multi-antifouling and synergistic treatment. Herein, we constructed the amino-rich NH2-AgBiS2/PANI (polyaniline)-g-C3N4 based multi-functional hydrogel functional layer onto the polyacrylonitrile (PAN) fiber membrane via polyphenol-mediated chitosan gelation and vacuum-assisted self-assembly techniques. The unique honeycomb-like structure and super-wetting feature synergistically contributed to the powerful oil resistance and flux breakthrough of composite membrane. Such membrane achieved superior permeability (up to 3558 L-1 m-2 h-1) for various SDS-stabilized oil-in-water emulsions and remarkable synergistic treatment efficiency of multicomponent pollutant-oil-water emulsion. The rational design of hydrogel layer on membrane surface intensified the photo-response ability and multiple electron transport channels, which offered the favorable photocatalytic self-cleaning performance towards degradation of organic dyes. According to the free radical quenching and EPR experiments, the photocatalytic mechanism was proposed. In addition, the inhibition rate of E. coli could reach 100 % under illumination of 24 h. Therefore, the integration of ultra-low oil adhesion, photocatalytic self-cleaning, and antibacterial features endows membrane with exceptional multiple anti-fouling performance, exhibiting unique advantages over traditional membranes in handling complex membrane fouling issues.
Collapse
Affiliation(s)
- Hongshan Jia
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan, China
| | - Yingqing Zhan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan, China; State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan, China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan, China.
| | - Fei Zhu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan, China
| | - Ximin Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan, China; State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan, China
| | - Xinyue Duan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan, China
| | - Ning Zhang
- School of Mechanical Engineering, Guizhou University of Engineering Science, Bijie 551700, Guizhou, China.
| | - Jie Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan, China
| | - Yinlong Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Lang D, Liu G, Wu R, Wang W, Wu J, Wang L, Yang J, Yang C, Wang L, Fu J. Efficient preparation of anisotropic cellulose sponge from cotton stalks: An excellent material for separation applications. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134941. [PMID: 38897116 DOI: 10.1016/j.jhazmat.2024.134941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/02/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Water pollution and solid waste resource reuse demand immediate attention and research. Here, we present a method to create anisotropic cellulose sponges from cotton stalk waste. Using the inherent structure of cotton stalks, we selectively remove lignin and hemicellulose via acid and alkali pretreatment. This process yields cellulose sponges with a natural pore structure. Our findings demonstrate that these sponges retain the original pore configuration of cotton stalks, providing excellent connectivity and compressibility due to their unique anisotropic three-dimensional structure. Moreover, these sponges exhibit exceptional super-hydrophilic and underwater super-oleophobic properties, with underwater oil contact angles exceeding 150° for all tested oils. External pressure can reduce the pore size of the cellulose sponge, facilitating the gravity-driven separation and removal of dyes and emulsions. Remarkably, removal efficiencies for Methylene Blue (MB), Congo Red (CR), water-in-oil (w/o) emulsions, and oil-in-water (o/w) emulsions exceed 99 %, 97 %, 99 %, and 99 %, respectively, highlighting superior removal and recyclability. Further investigation into the mechanisms of dye and emulsion removal employs X-ray photoelectron spectroscopy (XPS) characterization and molecular dynamics (MD) simulation. These insights lay the groundwork for the efficient recycling and resource utilization of waste cotton stalks, offering promising applications in water purification.
Collapse
Affiliation(s)
- Daning Lang
- Key Laboratory of Oil & Gas Fine Chemicals, School of Chemical Engineering, Xinjiang University, Urumqi 830046, China
| | - Gang Liu
- Key Laboratory of Oil & Gas Fine Chemicals, School of Chemical Engineering, Xinjiang University, Urumqi 830046, China
| | - Ronglan Wu
- Key Laboratory of Oil & Gas Fine Chemicals, School of Chemical Engineering, Xinjiang University, Urumqi 830046, China.
| | - Wei Wang
- Department of Chemistry, University of Bergen, Bergen 5007, Norway; Center for Pharmacy, University of Bergen, Bergen 5020, Norway.
| | - Jian Wu
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lili Wang
- Key Laboratory of Oil & Gas Fine Chemicals, School of Chemical Engineering, Xinjiang University, Urumqi 830046, China
| | - Jun Yang
- Key Laboratory of Oil & Gas Fine Chemicals, School of Chemical Engineering, Xinjiang University, Urumqi 830046, China
| | - Chao Yang
- Key Laboratory of Oil & Gas Fine Chemicals, School of Chemical Engineering, Xinjiang University, Urumqi 830046, China
| | - Lu Wang
- Key Laboratory of Oil & Gas Fine Chemicals, School of Chemical Engineering, Xinjiang University, Urumqi 830046, China
| | - Jihong Fu
- Key Laboratory of Oil & Gas Fine Chemicals, School of Chemical Engineering, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
3
|
Liu J, Huang Y, Zhang G, Wang Q, Shen S, Liu D, Hong Y, Wyman I. Dialdehyde cellulose (DAC) and polyethyleneimine (PEI) coated polyvinylidene fluoride (PVDF) membrane for simultaneously removing emulsified oils and anionic dyes. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134341. [PMID: 38642496 DOI: 10.1016/j.jhazmat.2024.134341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
Developing high-efficiency membrane for oil and dye removal is very urgent, because wastewater containing them can cause great damage to human and environment. In this study, a coated membrane was fabricated by applying DAC and PEI onto the commercial PVDF microfiltration membrane for supplying the demand. The coated membrane presents superhydrophlic and superoleophobic properties with a water contact angle of 0o and underwater oil contact angle exceed 150°, as well as excellent low underwater oil adhesion performance. The coated membrane shows high separation efficiency exceeded 99.0% and flux 350.0 L·m-2·h-1 when used for separating for six kinds of oil including pump oil, sunflower oil, n-hexadecane, soybean oil, diesel and kerosene in water emulsions. Additionally, the coated membrane can effectively remove anionic dyes, achieving rejection rates of 94.7%, 93.4%, 92.3%, 90.7% for the CR, MB, RB5, AR66, respectively. More importantly, the membrane was able to simultaneously remove emulsified oil and soluble anionic dyes in wastewater containing both of them. Therefore, this novel coated membrane can be a promising candidate for treating complex wastewater.
Collapse
Affiliation(s)
- Junliang Liu
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yixuan Huang
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Ganwei Zhang
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Qianhui Wang
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Shusu Shen
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Dapeng Liu
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yaoliang Hong
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Ian Wyman
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston K7L 3N6, Canada
| |
Collapse
|
4
|
Ning D, Lu Z, Tian C, Yan N, Xie F, Li N, Hua L. Superwettable cellulose acetate-based nanofiber membrane with spider-web structure for highly efficient oily water purification. Int J Biol Macromol 2023; 253:126865. [PMID: 37717870 DOI: 10.1016/j.ijbiomac.2023.126865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/19/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Electrospinning nanofibers membrane has received much attention to remove the insoluble oil from the sewage, while the poor mechanical strength and low oil/water separation efficiency of membranes limit their practical application. Here, we prepared a superwettable deacetylated cellulose acetate (d-CA)-based electrospinning nanofibers membrane simply dipped by bacterial cellulose (BC) and cross-linked with citric acid (CCA) to construct the spider-web structure spontaneously. Compared with the pristine d-CA membrane, the obtained d-CA/BC@CCA membrane exhibits the remarkable oil/water separation performance. The flux and separation efficiency of n-hexane/water emulsion without (SFE) and with (SSE) emulsifier for d-CA/BC@CCA membrane are 9364 L·m-2·h-1·bar-1, 98.34 % and 5479 L·m-2·h-1·bar-1, 99.39 %, respectively, which are mainly attributed to the improved hydrophilicity of its surface and the decreased pore sizes caused by the unique spider-web structure. In addition, d-CA/BC@CCA membrane also possesses the outstanding mechanical properties, the better cycle stability, as well as the excellent durability. This study provides a novel strategy for the construction of the high-performance oil/water separation membrane.
Collapse
Affiliation(s)
- Doudou Ning
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zhaoqing Lu
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Cuiyu Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Ning Yan
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, No. 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Fan Xie
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Nan Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Li Hua
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
5
|
Zhang Y, Tan L, Han N, Tian S, Li W, Wang W, Wu Y, Sun Z, Zhang X. Janus ZIF-8/P(AN-MA) hybrid microfiltration membrane with selected wettability for highly efficient separation of water/oil emulsions. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Ahmad T, Liu X, Guria C. Preparation of polyvinyl chloride (PVC) membrane blended with acrylamide grafted bentonite for oily water treatment. CHEMOSPHERE 2023; 310:136840. [PMID: 36257392 DOI: 10.1016/j.chemosphere.2022.136840] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/18/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The current work aims to advance the hydrophilicity, morphology, and antifouling characteristics of polyvinyl chloride (PVC) membranes for oily wastewater separation by incorporating modified bentonite. The surface of bentonite nanoparticles is altered by adopting the "grafting from" method using the surface-initiated atom transfer radical polymerization (SI-ATRP) approach. The PVC-based membrane is first prepared by blending acrylamide grafted bentonite (AAm-g-bentonite). AAm is grafted on bentonite in the presence of 2,2'-Bipyridyl and copper (I) bromide as a catalyst. The modified bentonite nanoparticles are studied using multiple techniques, such as fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), sedimentation tests, field emission scanning electron microscope (FE-SEM), etc. Flat-sheet PVC-based membrane is prepared by blending AAm-g-bentonite using the nonsolvent induced phase separation (NIPS) technique. Different methods, including FE-SEM, FTIR, sedimentation test, contact angle, porosity, antifouling property, and filtration studies of pure and oily water, are used to characterize and determine the performance of mixed-matrix membranes. Membrane performance is improved in the presence of modified bentonite (i.e., AAm-g-bentonite), with the best result achieved at PVC/AAm-g-ben-8 (i.e., 8 wt % of AAm-g-bentonite). Enhanced pure water flux (293.14 Lm-2h-1), permeate flux (123.96 Lm-2h-1), and oil rejection >93.2% are obtained by the reduced contact angle (49.1°) and improved porosity (71.22%).
Collapse
Affiliation(s)
- Tausif Ahmad
- Advanced Membranes and Porous Materials Centre, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Department of Petroleum Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India.
| | - Xiaowei Liu
- Advanced Membranes and Porous Materials Centre, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Chandan Guria
- Department of Petroleum Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India.
| |
Collapse
|
7
|
Baig N, Alowaid AM, Abdulazeez I, Salhi B, Sajid M, Kammakakam I. Designing of nanotextured inorganic-organic hybrid PVDF membrane for efficient separation of the oil-in-water emulsions. CHEMOSPHERE 2022; 308:136531. [PMID: 36150483 DOI: 10.1016/j.chemosphere.2022.136531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/01/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The separation of the emulsified oil/water is one of the critical environmental challenges. The PVDF membranes have been found helpful for separation, but rapid fouling makes them less attractive in treating oil-in-water emulsions. The design of antifouling membranes has become an area of deep interest. Herein, developing a novel modified PVDF ultrafiltration membrane was reported by doping the pyrrole and solidifying it in a ferric-containing coagulation bath, resulting in a unique nanotextured PVDF membrane (CCB-Fe/PPnp-PVDF) to separate the oil/water emulsions. The resultant CCB-Fe/PPnp-PVDF membrane was thoroughly characterized using the FTIR, FE-SEM, EDX, mapping, AFM, and contact analyzer. The hydrophilicity of the CCB-Fe/PPnp-PVDF was substantially improved, and the water contact angle was reduced from 81֯ ± 0.9֯ to 44֯ ± 1.7֯. The CCB-Fe/PPnp-PVDF membrane flux increased by 121% compared to the pristine PVDF membrane, with high separation efficiency of 99%. The hydrophilic nanotextured surface of the CCB-Fe/PPnp-PVDF membrane showed good antifouling behavior, with a flux recovery ratio (FRR) of more than 96%. Irreversible flux was just less than 4%. The high flux recovery ratio indicated that the nanotextured surface produced by the Fe/PPnp had prevented the blockage of the membrane pores and compact cake layer formation, which makes it an excellent membrane for oil/water emulsion separation. This strategy can be adopted for designing advanced membranes for separation applications.
Collapse
Affiliation(s)
- Nadeem Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Abdulaziz Mohammed Alowaid
- Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Ismail Abdulazeez
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Billel Salhi
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Sajid
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Irshad Kammakakam
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
8
|
Shakiba M, Abdouss M, Mazinani S, Reza Kalaee M. Super-hydrophilic electrospun PAN nanofibrous membrane modified with alkaline treatment and ultrasonic-assisted PANI in-situ polymerization for highly efficient gravity-driven oil/water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Li X, Han L, Huang Z, Li Z, Li F, Duan H, Huang L, Jia Q, Zhang H, Zhang S. A robust air superhydrophilic/superoleophobic diatomite porous ceramic for high-performance continuous separation of oil-in-water emulsion. CHEMOSPHERE 2022; 303:134756. [PMID: 35533935 DOI: 10.1016/j.chemosphere.2022.134756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Three-dimensional (3D) porous architecture has attracted considerable attention in remediation of oil/water emulsion. In present work, an air superhydrophilic/superoleophobic diatomite porous ceramic (AS-DC) was prepared, using SiO2 whiskers modified diatomite ceramic as the substrate and FS-50 as the modifier. The interconnected SiO2 whiskers intertwined on the skeleton of ceramic block forming a 3D network structure, which not only improved the wettability of AS-DC, but also reinforced its mechanical property (about 2.5 MPa of compressive strength). The as-prepared AS-DC with intrinsically superoleophobicity (154°) and superhydrophilicity (0°) exhibited an underwater oil contact angle of 161°, suggesting a multifunctional separation capability. By simply assembling AS-DC with pipes and a pump, it could not only separate the surfactant-stabilized oil-in-water emulsion in a permeation flux as high as 107.8 kg min-1 m-2 with a selectivity of >95%, but also collect the clean water from the floating oil/water mixture in a flux of 197.4 kg min-1 m-2 and a selectivity of ∼99%. In addition, the AS-DC was resistant to the salt/acid/alkaline corrosion and temperature fluctuation. The mechanical/chemical firmness of AS-DC renders it tremendous potential as a robust 3D architecture in real application for purification of oil/water mixture.
Collapse
Affiliation(s)
- Xiaojian Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Lei Han
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Zhong Huang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Zhi Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Faliang Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Hongjuan Duan
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Liang Huang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Quanli Jia
- Henan Key Laboratory of High Temperature Functional Ceramics, Zhengzhou University, Zhengzhou, 450052, China
| | - Haijun Zhang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Shaowei Zhang
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| |
Collapse
|
10
|
Wang Y, Zhou F, Wu Y, Dai L, Xu Z. High-Flux Nanofibrous Membranes with an Under-oil Superhydrophobic Surface Modulated by Zeolitic Imidazolate Framework-71 for Gravity-Driven Water-in-Oil Separation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yixing Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fu Zhou
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yulin Wu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liheng Dai
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhi Xu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|