1
|
Carrillo-Lopez LM, Villanueva-Verduzco C, Villanueva-Sánchez E, Fajardo-Franco ML, Aguilar-Tlatelpa M, Ventura-Aguilar RI, Soto-Hernández RM. Nanomaterials for Plant Disease Diagnosis and Treatment: A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2634. [PMID: 39339607 PMCID: PMC11434773 DOI: 10.3390/plants13182634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/06/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Currently, the excessive use of pesticides has generated environmental pollution and harmful effects on human health. The controlled release of active ingredients through the use of nanomaterials (NMs) appears to reduce human exposure and ecosystem alteration. Although the use of NMs can offer an alternative to traditional methods of disease diagnosis and control, it is necessary to review the current approach to the application of these NMs. This review describes the most recent and significant advances in using NMs for diagnosing and treating plant diseases (bacteria, phytopathogenic fungi, viruses, and phytopathogenic nematodes) in cultivated plants. Most studies have focused on reducing, delaying, or eliminating bacteria, fungi, viruses, and nematodes in plants. Both metallic (including metal oxides) and organic nanoparticles (NPs) and composites are widely used in diagnosing and controlling plant diseases due to their biocompatibility and ease of synthesis. Few studies have been carried out with regard to carbon-based NPs due to their toxicity, so future studies should address the development of detection tools, ecological and economic impacts, and human health. The synergistic effect of NMs as fertilizers and pesticides opens new areas of knowledge on the mechanisms of action (plant-pathogen-NMs interaction), the interaction of NMs with nutrients, the effects on plant metabolism, and the traceability of NMs to implement sustainable approaches. More studies are needed involving in vivo models under international regulations to ensure their safety. There is still controversy in the release of NMs into the environment because they could threaten the stability and functioning of biological systems, so research in this area needs to be improved.
Collapse
Affiliation(s)
- Luis M Carrillo-Lopez
- Consejo Nacional de Humanidades, Ciencias y Tecnologías-Botánica, Colegio de Postgraduados Campus Montecillo, Carretera Mexico-Texcoco Km. 36.5, Texcoco 56230, Mexico
| | - Clemente Villanueva-Verduzco
- Departamento de Fitotecnia, Universidad Autónoma Chapingo, Carretera México-Texcoco Km. 38.5, Chapingo 56230, Estado de México, Mexico
| | - Evert Villanueva-Sánchez
- Consejo Nacional de Humanidades, Ciencias y Tecnologías-Laboratorio Nacional de Investigación y Servicio Agroalimentario y Forestal, Universidad Autónoma Chapingo, Carretera México-Texcoco Km. 38.5, Chapingo 56230, Estado de México, Mexico
| | - Marja L Fajardo-Franco
- Posgrado en Manejo Sustentable de Recursos Naturales, Universidad Intercultural del Estado de Puebla, Calle Principal a Lipuntlahuaca, Huehuetla 73475, Puebla, Mexico
| | - Martín Aguilar-Tlatelpa
- Posgrado en Manejo Sustentable de Recursos Naturales, Universidad Intercultural del Estado de Puebla, Calle Principal a Lipuntlahuaca, Huehuetla 73475, Puebla, Mexico
| | - Rosa I Ventura-Aguilar
- CONAHCYT-Recursos Genéticos y Productividad-Fruticultura, Colegio de Postgraduados, Campus Montecillo, Carretera Mexico-Texcoco Km. 36.5, Texcoco 56230, Mexico
| | - Ramón Marcos Soto-Hernández
- Botánica, Colegio de Postgraduados, Campus Montecillo, Carretera Mexico-Texcoco Km. 36.5, Texcoco 56230, Mexico
| |
Collapse
|
2
|
Ávila Oliveira BD, Gomes RS, de Carvalho AM, Lima EMF, Pinto UM, da Cunha LR. Revolutionizing food safety with electrochemical biosensors for rapid and portable pathogen detection. Braz J Microbiol 2024; 55:2511-2525. [PMID: 38922532 PMCID: PMC11405362 DOI: 10.1007/s42770-024-01427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Foodborne diseases remain a worldwide concern, despite the advances made in sanitation, pathogen surveillance and food safety management systems. The methods routinely applied for detecting pathogens in foods are time consuming, labor intensive and usually require trained and qualified individuals. The objective of this review was to highlight the use of biosensors, with a focus on the electrochemical devices, as promising alternatives for detecting foodborne pathogens. These biosensors present high speed for obtaining results, with the possibility of evaluating foods in real time, at low cost, ease of use, in addition to being compact and portable. These aspects are considered advantageous and suitable for use in food safety management systems. This work also shows some limitations for the application of biosensors, and we present perspectives with the development and use of nanomaterials.
Collapse
Affiliation(s)
- Brígida D' Ávila Oliveira
- Health and Nutrition Graduate Program, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Raíssa Soares Gomes
- Health and Nutrition Graduate Program, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Alice Mendes de Carvalho
- Health and Nutrition Graduate Program, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Emília Maria França Lima
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Uelinton Manoel Pinto
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Luciana Rodrigues da Cunha
- Department of Foods, Health and Nutrition Graduate Program, Federal University of Ouro Preto, Federal University of Ouro Preto (UFOP), Ouro Preto, 35400-000, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Helmy KG, Abu-Hussien SH. Root Rot Management in Common Bean (Phaseolus vulgaris L.) Through Integrated Biocontrol Strategies using Metabolites from Trichoderma harzianum, Serratia marcescens, and Vermicompost Tea. MICROBIAL ECOLOGY 2024; 87:94. [PMID: 39008061 PMCID: PMC11249416 DOI: 10.1007/s00248-024-02400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024]
Abstract
Common bean (Phaseolus vulgaris L.) is an essential food staple and source of income for small-holder farmers across Africa. However, yields are greatly threatened by fungal diseases like root rot induced by Rhizoctonia solani. This study aimed to evaluate an integrated approach utilizing vermicompost tea (VCT) and antagonistic microbes for effective and sustainable management of R. solani root rot in common beans. Fourteen fungal strains were first isolated from infected common bean plants collected across three Egyptian governorates, with R. solani being the most virulent isolate with 50% dominance. Subsequently, the antagonistic potential of vermicompost tea (VCT), Serratia sp., and Trichoderma sp. was assessed against this destructive pathogen. Combinations of 10% VCT and the biocontrol agent isolates displayed potent inhibition of R. solani growth in vitro, prompting in planta testing. Under greenhouse conditions, integrated applications of 5 or 10% VCT with Serratia marcescens, Trichoderma harzianum, or effective microorganisms (EM1) afforded up to 95% protection against pre- and post-emergence damping-off induced by R. solani in common bean cv. Giza 6. Similarly, under field conditions, combining VCT with EM1 (VCT + EM1) or Trichoderma harzianum (VCT + Trichoderma harzianum) substantially suppressed disease severity by 65.6% and 64.34%, respectively, relative to untreated plants. These treatments also elicited defense enzyme activity and distinctly improved growth parameters including 136.68% and 132.49% increases in pod weight per plant over control plants. GC-MS profiling of Trichoderma harzianum, Serratia marcescens, and vermicompost tea (VCT) extracts revealed unique compounds dominated by cyclic pregnane, fatty acid methyl esters, linoleic acid derivatives, and free fatty acids like oleic, palmitic, and stearic acids with confirmed biocontrol and plant growth-promoting activities. The results verify VCT-mediated delivery of synergistic microbial consortia as a sustainable platform for integrated management of debilitating soil-borne diseases, enhancing productivity and incomes for smallholder bean farmers through regeneration of soil health. Further large-scale validation can pave the adoption of this climate-resilient approach for securing food and nutrition security.
Collapse
Affiliation(s)
- Karima G Helmy
- Plant Pathology Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt
| | - Samah H Abu-Hussien
- Agricultural Microbiology Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt.
| |
Collapse
|
4
|
Takallu S, Aiyelabegan HT, Zomorodi AR, Alexandrovna KV, Aflakian F, Asvar Z, Moradi F, Behbahani MR, Mirzaei E, Sarhadi F, Vakili-Ghartavol R. Nanotechnology improves the detection of bacteria: Recent advances and future perspectives. Heliyon 2024; 10:e32020. [PMID: 38868076 PMCID: PMC11167352 DOI: 10.1016/j.heliyon.2024.e32020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/23/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
Nanotechnology has advanced significantly, particularly in biomedicine, showing promise for nanomaterial applications. Bacterial infections pose persistent public health challenges due to the lack of rapid pathogen detection methods, resulting in antibiotic overuse and bacterial resistance, threatening the human microbiome. Nanotechnology offers a solution through nanoparticle-based materials facilitating early bacterial detection and combating resistance. This study explores recent research on nanoparticle development for controlling microbial infections using various nanotechnology-driven detection methods. These approaches include Surface Plasmon Resonance (SPR) Sensors, Surface-Enhanced Raman Scattering (SERS) Sensors, Optoelectronic-based sensors, Bacteriophage-Based Sensors, and nanotechnology-based aptasensors. These technologies provide precise bacteria detection, enabling targeted treatment and infection prevention. Integrating nanoparticles into detection approaches holds promise for enhancing patient outcomes and mitigating harmful bacteria spread in healthcare settings.
Collapse
Affiliation(s)
- Sara Takallu
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Abolfazl Rafati Zomorodi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Fatemeh Aflakian
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zahra Asvar
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Moradi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahrokh Rajaee Behbahani
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Firoozeh Sarhadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roghayyeh Vakili-Ghartavol
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Frigoli M, Lowdon JW, Caldara M, Cleij TJ, Diliën H, Eersels K, van Grinsven B. Emerging Biomimetic Sensor Technologies for the Detection of Pathogenic Bacteria: A Commercial Viability Study. ACS OMEGA 2024; 9:23155-23171. [PMID: 38854523 PMCID: PMC11154936 DOI: 10.1021/acsomega.4c01478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024]
Abstract
Ensuring a rapid and accurate identification of harmful bacteria is crucial in various fields including environmental monitoring, food safety, and clinical diagnostics. Conventional detection methods often suffer from limitations such as long analysis time, complexity, and the need for qualified personnel. Therefore, a lot of research effort is devoted to developing technologies with the potential to revolutionize the detection of pathogenic bacteria by offering rapid, sensitive, and user-friendly platforms for point-of-care analysis. In this light, biosensors have gained significant commercial attention in recent years due to their simplicity, portability, and rapid analysis capabilities. The purpose of this review is to identify a trend by analyzing which biosensor technologies have become commercially successful in the field of bacteria detection. Moreover, we highlight the characteristics that a biosensor must possess to finally arrive in the market and therefore in the hands of the end-user, and we present critical examples of the market applications of various technologies. The aim is to investigate the reason why certain technologies have achieved commercial success and extrapolate these trends to the future economic viability of a new subfield in the world of biosensing: the development of biomimetic sensor platforms. Therefore, an overview of recent advances in the field of biomimetic bacteria detection will be presented, after which the challenges that need to be addressed in the coming years to improve market penetration will be critically evaluated. We will zoom into the current shortcomings of biomimetic sensors based on imprinting technology and aptamers and try to come up with a recommendation for further development based on the trends observed from previous commercial success stories in biosensing.
Collapse
Affiliation(s)
- Margaux Frigoli
- Sensor Engineering Department,
Faculty of Science and Engineering, Maastricht
University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Joseph W. Lowdon
- Sensor Engineering Department,
Faculty of Science and Engineering, Maastricht
University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Manlio Caldara
- Sensor Engineering Department,
Faculty of Science and Engineering, Maastricht
University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Thomas J. Cleij
- Sensor Engineering Department,
Faculty of Science and Engineering, Maastricht
University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Hanne Diliën
- Sensor Engineering Department,
Faculty of Science and Engineering, Maastricht
University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Kasper Eersels
- Sensor Engineering Department,
Faculty of Science and Engineering, Maastricht
University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Bart van Grinsven
- Sensor Engineering Department,
Faculty of Science and Engineering, Maastricht
University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
6
|
Kazemzadeh-Beneh H, Safarnejad MR, Norouzi P, Samsampour D, Alavi SM, Shaterreza D. Development of label-free electrochemical OMP-DNA probe biosensor as a highly sensitive system to detect of citrus huanglongbing. Sci Rep 2024; 14:12183. [PMID: 38806617 PMCID: PMC11133464 DOI: 10.1038/s41598-024-63112-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024] Open
Abstract
The fabrication of the first label-free electrochemical DNA probe biosensor for highly sensitive detection of Candidatus Liberibacter asiaticus (CLas), as the causal agent of citrus huanglongbing disease, is conducted here. An OMP probe was designed based on the hybridization with its target-specific sequence in the outer membrane protein (OMP) gene of CLas. The characterization of the steps of biosensor fabrication and hybridization process between the immobilized OMP-DNA probe and the target ssDNA oligonucleotides (OMP-complementary and three mismatches OMP or OMP-mutation) was monitored using cyclic voltammetry and electrochemical impedance spectroscopy based on increasing or decreasing in the electron transfer in [Fe (CN)6]3-/4- on the modified gold electrode surface. The biosensor sensitivity indicated that the peak currents were linear over ranges from 20 to 100 nM for OMP-complementary with the detection limit of 0.026 nM (S/N = 3). The absence of any cross-interference with other biological DNA sequences confirmed a high selectivity of fabricated biosensor. Likewise, it showed good specificity in discriminating the mutation oligonucleotides from complementary target DNAs. The functional performance of optimized biosensor was achieved via the hybridization of OMP-DNA probe with extracted DNA from citrus plant infected with CLas. Therefore, fabricated biosensor indicates promise for sensitivity and early detection of citrus huanglongbing disease.
Collapse
Affiliation(s)
- Hashem Kazemzadeh-Beneh
- Division of Biotechnology & Plant Molecular Genetic, Department of Horticulture Science, University of Hormozgan, Bandar Abbas, Iran
| | - Mohammad Reza Safarnejad
- Department of Plant Viruses, Agricultural Research Education and Extension Organization, Iranian Research Institute of Plant Protection, P.O. Box 1452-19395, Tehran, Iran.
| | - Parviz Norouzi
- Faculty of Chemistry, Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran
| | - Davood Samsampour
- Division of Biotechnology & Plant Molecular Genetic, Department of Horticulture Science, University of Hormozgan, Bandar Abbas, Iran
| | - Seyed Mehdi Alavi
- National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Davood Shaterreza
- Faculty of Chemistry, Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Hussain M, He X, Wang C, Wang Y, Wang J, Chen M, Kang H, Yang N, Ni X, Li J, Zhou X, Liu B. Recent advances in microfluidic-based spectroscopic approaches for pathogen detection. BIOMICROFLUIDICS 2024; 18:031505. [PMID: 38855476 PMCID: PMC11162289 DOI: 10.1063/5.0204987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
Rapid identification of pathogens with higher sensitivity and specificity plays a significant role in maintaining public health, environmental monitoring, controlling food quality, and clinical diagnostics. Different methods have been widely used in food testing laboratories, quality control departments in food companies, hospitals, and clinical settings to identify pathogens. Some limitations in current pathogens detection methods are time-consuming, expensive, and laborious sample preparation, making it unsuitable for rapid detection. Microfluidics has emerged as a promising technology for biosensing applications due to its ability to precisely manipulate small volumes of fluids. Microfluidics platforms combined with spectroscopic techniques are capable of developing miniaturized devices that can detect and quantify pathogenic samples. The review focuses on the advancements in microfluidic devices integrated with spectroscopic methods for detecting bacterial microbes over the past five years. The review is based on several spectroscopic techniques, including fluorescence detection, surface-enhanced Raman scattering, and dynamic light scattering methods coupled with microfluidic platforms. The key detection principles of different approaches were discussed and summarized. Finally, the future possible directions and challenges in microfluidic-based spectroscopy for isolating and detecting pathogens using the latest innovations were also discussed.
Collapse
Affiliation(s)
| | - Xu He
- Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Chao Wang
- Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Yichuan Wang
- Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Jingjing Wang
- Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Mingyue Chen
- Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Haiquan Kang
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | | | - Xinye Ni
- The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213161, China
| | | | - Xiuping Zhou
- Department of Laboratory Medicine, The Peoples Hospital of Rugao, Rugao Hospital Affiliated to Nantong University, Nantong 226500, China
| | - Bin Liu
- Author to whom correspondence should be addressed:
| |
Collapse
|
8
|
Yadav S, Prasad M, Singh N. Biosensor: An Emerging Technological Tool for Microorganisms and Its Disease Diagnosis. Indian J Microbiol 2023; 63:395-397. [PMID: 38031605 PMCID: PMC10682339 DOI: 10.1007/s12088-023-01142-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Affiliation(s)
- Santosh Yadav
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, New Delhi, Delhi 110007 India
| | - Minakshi Prasad
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar, 125001 India
| | - Namita Singh
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001 India
| |
Collapse
|
9
|
Bhupathi P, Elhassan A-Elgadir TM, Mohammed Ali RH, Sanaan Jabbar H, Gulnoza D, Joshi SK, Kadhem Abid M, Ahmed Said E, Alawadi A, Alsaalamy A. Fluorescence Resonance Energy Transfer (FRET)-Based Sensor for Detection of Foodborne Pathogenic Bacteria: A Review. Crit Rev Anal Chem 2023:1-18. [PMID: 37917532 DOI: 10.1080/10408347.2023.2274050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Sensitive and rapid determination of foodborne pathogenic bacteria is of practical importance for the control and prevention of foodborne illnesses. Nowadays, with the prosperous development of fluorescence assays, fluorescence resonance energy transfer (FRET)-derived diagnostic strategies are extensively employed in quantitative analysis of different pathogenic bacteria in food-related matrices, which displays a rapid, simple, stable, reliable, cost-effective, selective, sensitive, and real-time way. Considering the extensive efforts that have been made in this field so far, we here discuss the up-to-date developments of FRET-based diagnostic approaches for the determination of key foodborne pathogens like Staphylococcus aureus, Escherichia coli, Vibrio parahaemolyticus, Salmonella spp., Campylobacter spp., and Bacillus cereus in complex food-related matrices. Moreover, the principle of this technology, the choosing standards of acceptor-donor pairs, and the fluorescence properties are also profiled. Finally, the current prospects and challenges in this field are also put forward.
Collapse
Affiliation(s)
- Priyadharshini Bhupathi
- VIT School of Agricultural Innovations and Advanced Learning (VAIAL), Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | | | | | - Hijran Sanaan Jabbar
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Djakhangirova Gulnoza
- Department of Food Products Technology, Tashkent Institute of Chemical Technology, Navoi street 32, Tashkent 100011, Uzbekistan
| | - S K Joshi
- Department of Mechanical Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun-248007, India
| | - Mohammed Kadhem Abid
- Department of Anesthesia, College of Health and medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Esraa Ahmed Said
- Department of Dentistry, Al-Noor University College, Nineveh, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| |
Collapse
|
10
|
Zelikovich D, Dery L, Sagi-Cohen H, Mandler D. Imprinting of nanoparticles in thin films: Quo Vadis? Chem Sci 2023; 14:9630-9650. [PMID: 37736620 PMCID: PMC10510851 DOI: 10.1039/d3sc02178e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/01/2023] [Indexed: 09/23/2023] Open
Abstract
Nanomaterials, and especially nanoparticles, have been introduced to almost any aspect of our lives. This has caused increasing concern as to their toxicity and adverse effects on the environment and human health. The activity of nanoparticles, including their nanotoxicity, is not only a function of the material they are made of but also their size, shape, and surface properties. It is evident that there is an unmet need for simple approaches to the speciation of nanoparticles, namely to monitor and detect them based on their properties. An appealing method for such speciation involves the imprinting of nanoparticles in soft matrices. The principles of imprinting nanoparticles originate from the molecularly imprinted polymer (MIP) approach. This review summarizes the current status of this emerging field, which bridges between the traditional MIP approach and the imprinting of larger entities such as viruses and bacteria. The concepts of nanoparticle imprinting and the requirement of both physical and chemical matching between the nanoparticles and the matrix are discussed and demonstrated.
Collapse
Affiliation(s)
- Din Zelikovich
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Linoy Dery
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Hila Sagi-Cohen
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Daniel Mandler
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| |
Collapse
|
11
|
Joshi A, Song HG, Yang SY, Lee JH. Integrated Molecular and Bioinformatics Approaches for Disease-Related Genes in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2454. [PMID: 37447014 DOI: 10.3390/plants12132454] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
Modern plant pathology relies on bioinformatics approaches to create novel plant disease diagnostic tools. In recent years, a significant amount of biological data has been generated due to rapid developments in genomics and molecular biology techniques. The progress in the sequencing of agriculturally important crops has made it possible to develop a better understanding of plant-pathogen interactions and plant resistance. The availability of host-pathogen genome data offers effective assistance in retrieving, annotating, analyzing, and identifying the functional aspects for characterization at the gene and genome levels. Physical mapping facilitates the identification and isolation of several candidate resistance (R) genes from diverse plant species. A large number of genetic variations, such as disease-causing mutations in the genome, have been identified and characterized using bioinformatics tools, and these desirable mutations were exploited to develop disease resistance. Moreover, crop genome editing tools, namely the CRISPR (clustered regulatory interspaced short palindromic repeats)/Cas9 (CRISPR-associated) system, offer novel and efficient strategies for developing durable resistance. This review paper describes some aspects concerning the databases, tools, and techniques used to characterize resistance (R) genes for plant disease management.
Collapse
Affiliation(s)
- Alpana Joshi
- Department of Bioenvironmental Chemistry, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agriculture Technology & Agri-Informatics, Shobhit Institute of Engineering & Technology, Meerut 250110, India
| | - Hyung-Geun Song
- Department of Bioenvironmental Chemistry, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Seo-Yeon Yang
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ji-Hoon Lee
- Department of Bioenvironmental Chemistry, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
12
|
Arya SS, Dias SB, Jelinek HF, Hadjileontiadis LJ, Pappa AM. The convergence of traditional and digital biomarkers through AI-assisted biosensing: A new era in translational diagnostics? Biosens Bioelectron 2023; 235:115387. [PMID: 37229842 DOI: 10.1016/j.bios.2023.115387] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/11/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Advances in consumer electronics, alongside the fields of microfluidics and nanotechnology have brought to the fore low-cost wearable/portable smart devices. Although numerous smart devices that track digital biomarkers have been successfully translated from bench-to-bedside, only a few follow the same fate when it comes to track traditional biomarkers. Current practices still involve laboratory-based tests, followed by blood collection, conducted in a clinical setting as they require trained personnel and specialized equipment. In fact, real-time, passive/active and robust sensing of physiological and behavioural data from patients that can feed artificial intelligence (AI)-based models can significantly improve decision-making, diagnosis and treatment at the point-of-procedure, by circumventing conventional methods of sampling, and in person investigation by expert pathologists, who are scarce in developing countries. This review brings together conventional and digital biomarker sensing through portable and autonomous miniaturized devices. We first summarise the technological advances in each field vs the current clinical practices and we conclude by merging the two worlds of traditional and digital biomarkers through AI/ML technologies to improve patient diagnosis and treatment. The fundamental role, limitations and prospects of AI in realizing this potential and enhancing the existing technologies to facilitate the development and clinical translation of "point-of-care" (POC) diagnostics is finally showcased.
Collapse
Affiliation(s)
- Sagar S Arya
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Sofia B Dias
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Interdisciplinary Center for Human Performance, Faculdade de Motricidade Humana, Universidade de Lisboa, Portugal.
| | - Herbert F Jelinek
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, P O Box 127788, Abu Dhabi, United Arab Emirates
| | - Leontios J Hadjileontiadis
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, P O Box 127788, Abu Dhabi, United Arab Emirates; Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, GR, 54124, Thessaloniki, Greece
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, P O Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering and Biotechnology, Cambridge University, Cambridge, UK.
| |
Collapse
|
13
|
Ma J, Li Y, Chen F, Sun Y, Zhu Y, Wang L. Bacillus mycoides PM35 in combination with titanium dioxide (TiO 2)⎯nanoparticles enhanced morpho-physio-biochemical attributes in Barley (Hordeum vulgare L.) under cadmium stress. CHEMOSPHERE 2023; 323:138224. [PMID: 36828111 DOI: 10.1016/j.chemosphere.2023.138224] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are naturally occurring soil bacteria and are known to induce plant growth promotion and titanium dioxide (TiO2)⎯nanoparticles (NPs) used in a range of applications that need increased whiteness, improved corrosion resistance and photocatalytic activity. Keeping in view the stress mitigation potential of TiO2⎯NPS and B. mycoides PM35, the existing research work was premeditated to inspect the beneficial role of seed priming with using different levels of TiO2⎯NPs i.e., [(0 no TiO2⎯NPs), 25 and 50 μg/ml] and soil incubation plant growth promoting rhizobacteria (B. mycoides PM35) i.e., [(0 no B. mycoides PM35), 10 and 20 μL] on biochemical, morphological and physiological characteristics of Barley (Hordeum vulgare L.) plants under different levels of Cd in the soil i.e., [(0 Cd), 50 and 100 mg kg-1]. Results from the present study showed that the increasing levels of Cd in the soil significantly (P < 0.05) decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes, sugars, and nutritional contents from the roots and shoots of the plants. In contrast, increasing levels of Cd in the soil significantly (P < 0.05) increased oxidative stress indicators in term of malondialdehyde, hydrogen peroxide, and electrolyte leakage, and also increased organic acid exudation patter in the roots of H. vulgare. Although, the activities of enzymatic antioxidants and the response of their gene expressions in the roots and shoots of the plants and non-enzymatic such as phenolic, flavonoid, ascorbic acid, and anthocyanin contents were initially increased with the exposure of 50 mg kg-1 Cd, but decreased by the increasing the Cd concentration 100 mg kg-1 in the soil. The negative impact of Cd toxicity can overcome the application of PGPR (B. mycoides PM35) and TiO2⎯NPs, which ultimately increased plant growth and biomass by capturing the reactive oxygen species, and decreased oxidative stress in H. vulgare by decreasing the Cd contents in the roots and shoots of the plants. Our results also showed that the TiO2⎯NPs were more sever and showed better results when we compared with PGPR (B. mycoides PM35) under the same treatment of Cd in the soil. Research findings, therefore, suggest that the combined application of PGPR (B. mycoides PM35) and TiO2⎯NPs can ameliorate Cd toxicity in H. vulgare, resulting in improved plant growth and composition under metal stress, as depicted by balanced exudation of organic acids.
Collapse
Affiliation(s)
- Jing Ma
- School of Public Administration, Hohai University, Nanjing, 211100, China.
| | - Yuhang Li
- School of Public Administration, Hohai University, Nanjing, 211100, China.
| | - Fu Chen
- School of Public Administration, Hohai University, Nanjing, 211100, China.
| | - Yan Sun
- School of Public Administration, Hohai University, Nanjing, 211100, China.
| | - Yanfeng Zhu
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Liping Wang
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China.
| |
Collapse
|
14
|
Huang Y, Yang Y, Liang B, Lu S, Yuan X, Jia Z, Liu J, Liu Y. Green Nanopesticide: pH-Responsive Eco-Friendly Pillar[5]arene-Modified Selenium Nanoparticles for Smart Delivery of Carbendazim to Suppress Sclerotinia Diseases. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16448-16459. [PMID: 36943808 DOI: 10.1021/acsami.2c23241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Controlled-release delivery systems have been widely used to improve the efficacy and bioavailability of pesticides and minimize environmental risks. Herein, a fungicide carbendazim (CBZ)-loaded, a kind of nanovalve including trimethylammoniumpillar[5]arene (AP5), and methyl orange (MO)-functionalized mesoporous selenium (MSe) nanopesticides (CBZ@AP5/MSe⊃MO) were prepared. The nanovalve endowed CBZ@AP5/MSe⊃MO with a pH-responsive property, so the CBZ@AP5/MSe⊃MO can respond to the microenvironment of the pathogen Sclerotinia sclerotiorum (S. sclerotiorum). First, MO was shed due to protonation, and AP5-functionalized MSe gradually dissolved in an acid environment. Finally, CBZ was released rapidly. It is reported that AP5 and MO as the host and guest functionalized mesoporous selenium (MSe) have never been applied to agriculture. In vitro release experiments showed that the cumulative release rate of CBZ at pH 4.5 was 1.74 times higher than that in a neutral environment. In addition, we found that the contact angle of the CBZ@AP5/MSe⊃MO in maize and rape leaves was effectively decreased, which could retain more in the leaves after washout. It can also decrease the dry biomass and the reducing sugar of S.sclerotiorum. The CBZ@AP5/MSe⊃MO holds a good safety profile for plants, animal cells, and the environment owing to the targeted release properties. These results suggest that CBZ@AP5/MSe⊃MO is an environmentally friendly and effective drug-loaded system against S. sclerotiorum. It provides a new strategy for the design and development of nanopesticides and the control of S. sclerotiorum.
Collapse
Affiliation(s)
- Yuqin Huang
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Yonglan Yang
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Bin Liang
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Shuhao Lu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Xiaoyu Yuan
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Zhi Jia
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Jie Liu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Yanan Liu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen 518110, China
| |
Collapse
|
15
|
Liu L, Ma W, Wang X, Li S. Recent Progress of Surface-Enhanced Raman Spectroscopy for Bacteria Detection. BIOSENSORS 2023; 13:350. [PMID: 36979564 PMCID: PMC10046079 DOI: 10.3390/bios13030350] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
There are various pathogenic bacteria in the surrounding living environment, which not only pose a great threat to human health but also bring huge losses to economic development. Conventional methods for bacteria detection are usually time-consuming, complicated and labor-intensive, and cannot meet the growing demands for on-site and rapid analyses. Sensitive, rapid and effective methods for pathogenic bacteria detection are necessary for environmental monitoring, food safety and infectious bacteria diagnosis. Recently, benefiting from its advantages of rapidity and high sensitivity, surface-enhanced Raman spectroscopy (SERS) has attracted significant attention in the field of bacteria detection and identification as well as drug susceptibility testing. Here, we comprehensively reviewed the latest advances in SERS technology in the field of bacteria analysis. Firstly, the mechanism of SERS detection and the fabrication of the SERS substrate were briefly introduced. Secondly, the label-free SERS applied for the identification of bacteria species was summarized in detail. Thirdly, various SERS tags for the high-sensitivity detection of bacteria were also discussed. Moreover, we emphasized the application prospects of microfluidic SERS chips in antimicrobial susceptibility testing (AST). In the end, we gave an outlook on the future development and trends of SERS in point-of-care diagnoses of bacterial infections.
Collapse
Affiliation(s)
- Lulu Liu
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wenrui Ma
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
- Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Xiang Wang
- Department of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shunbo Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
- Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
16
|
Ali Q, Yu C, Wang Y, Sheng T, Zhao X, Wu X, Jing L, Gu Q, Wu H, Gao X. High killing rate of nematode and promotion of rice growth by synthetic volatiles from Bacillus strains due to enhanced oxidative stress response. PHYSIOLOGIA PLANTARUM 2023; 175:e13868. [PMID: 36724171 DOI: 10.1111/ppl.13868] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/29/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The plant parasitic nematode Aphelenchoides besseyi is a major pest that poses serious threats to different vegetables and crop plants. In the present study, volatiles isolated from Bacillus spp. were utilized as green biocontrol agents to overcome nematodes. In in vitro experiment, Bacillus spp. GBSC56, SYST2, and FZB42 showed the strongest nematicidal activity with killing rates of 80.78%, 75.69%, and 60.45%, respectively, as compared with control. The selected synthetic volatile organic compounds (VOCs), namely albuterol, benzaldehyde (BDH), 1,2-benzisothiazol-3(2H)-one (1,2-HIT), dimethyl disulfide (DMDS), 2-undecanone (2-UD), and 1,3-propanediole (1,3-PD), exhibited strong nematicidal activity, with A. besseyi killing rate of 85.58%, 82.65%, 81.75%, 80.36%, 84.45%, and 82.36%, respectively, at 400 μg/mL. Microscopic analysis proved that the rapid mortality was due to the production of reactive oxygen species (ROS). Molecular docking attributed this ROS production to the nematicidal effect of synthetic VOCs on NADH DEHYDROGENASE SUBUNIT 2, which is known to play a critical role in the suppression of ROS in nematode models. In a greenhouse experiment, the Bacillus strains GBSC56, SYST2, and FZB42 and their synthetic VOCs significantly improved the physiological parameters in terms of growth promotion traits. In addition, selected genes related to growth promotion and defense genes showed a significant upregulation of their expression in rice seedlings treated with those synthetic VOCs. Overall, these findings revealed that the selected Bacillus strains and their synthetic VOCs possess high potential against A. besseyi. Moreover, this study also sheds new light on the mechanisms by which specific Bacillus nematicidal VOCs influence important genes involved in rice plant growth promotion and could effectively be used to suppress plant parasitic nematodes.
Collapse
Affiliation(s)
- Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Chenjie Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yujie Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Tao Sheng
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiaozhen Zhao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiaohui Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Liang Jing
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qin Gu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Huijun Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xuewen Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
17
|
Rajer FU, Samma MK, Ali Q, Rajar WA, Wu H, Raza W, Xie Y, Tahir HAS, Gao X. Bacillus spp.-Mediated Growth Promotion of Rice Seedlings and Suppression of Bacterial Blight Disease under Greenhouse Conditions. Pathogens 2022; 11:1251. [PMID: 36365003 PMCID: PMC9694674 DOI: 10.3390/pathogens11111251] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Rice (Oryza sativa L.) is a major cereal and staple food crop worldwide, and its growth and production are affected by several fungal and bacterial phytopathogens. Bacterial blight (BB) is one of the world's most devastating rice diseases, caused by Xanthomonas oryzae pv. oryzae (Xoo). In the current study, Bacillus atrophaeus FA12 and B. cabrialesii FA26 were isolated from the rice rhizosphere and characterized as having broad-range antifungal and antibacterial activities against various phytopathogens, including Xoo. In addition, the selected strains were further evaluated for their potent rice growth promotion and suppression efficacy against BB under greenhouse conditions. The result shows that FA12 and FA26, applied as seed inoculants, significantly enhanced the vigor index of rice seedlings by 78.89% and 108.70%, respectively. Suppression efficacy against BB disease by FA12 and FA26 reached up to 59.74% and 54.70%, respectively, in pot experiments. Furthermore, MALDI-TOF MS analysis of selected strains revealed the masses ranged from m/z 1040 to 1540, representing that iturins and fengycin are the major antimicrobial compounds in the crude extracts, which might have beneficial roles in rice defence responses against BB. In conclusion, FA12 and FA26 possess broad-range antagonistic activity and have the capability to promote plant growth traits. More importantly, applying these strains has a high potential for implementing eco-friendly, cost-effective, and sustainable management practices for BB disease.
Collapse
Affiliation(s)
- Faheem Uddin Rajer
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Department of Plant Pathology, Faculty of Crop Protection, Sindh Agriculture University, Tandojam 70060, Pakistan
| | - Muhammad Kaleem Samma
- Department of Biosciences, Shaheed Zulfiqar Ali Bhutto Institute of Science and Technology, Karachi 75600, Pakistan
| | - Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Waleed Ahmed Rajar
- Institute of Microbiology, University of Sindh, Jamshoro 76080, Pakistan
| | - Huijun Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Waseem Raza
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongli Xie
- State Key Laboratory of Plateau Ecology and Agriculture, Department of Grassland Science, College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Hafiz Abdul Samad Tahir
- Tobacco Research Institute, Pakistan Tobacco Board, Ministry of National Food Security and Research, Peshawar 25124, Pakistan
| | - Xuewen Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
18
|
Chattha MS, Ali Q, Haroon M, Afzal MJ, Javed T, Hussain S, Mahmood T, Solanki MK, Umar A, Abbas W, Nasar S, Schwartz-Lazaro LM, Zhou L. Enhancement of nitrogen use efficiency through agronomic and molecular based approaches in cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:994306. [PMID: 36237509 PMCID: PMC9552886 DOI: 10.3389/fpls.2022.994306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/22/2022] [Indexed: 05/22/2023]
Abstract
Cotton is a major fiber crop grown worldwide. Nitrogen (N) is an essential nutrient for cotton production and supports efficient crop production. It is a crucial nutrient that is required more than any other. Nitrogen management is a daunting task for plants; thus, various strategies, individually and collectively, have been adopted to improve its efficacy. The negative environmental impacts of excessive N application on cotton production have become harmful to consumers and growers. The 4R's of nutrient stewardship (right product, right rate, right time, and right place) is a newly developed agronomic practice that provides a solid foundation for achieving nitrogen use efficiency (NUE) in cotton production. Cropping systems are equally crucial for increasing production, profitability, environmental growth protection, and sustainability. This concept incorporates the right fertilizer source at the right rate, time, and place. In addition to agronomic practices, molecular approaches are equally important for improving cotton NUE. This could be achieved by increasing the efficacy of metabolic pathways at the cellular, organ, and structural levels and NUE-regulating enzymes and genes. This is a potential method to improve the role of N transporters in plants, resulting in better utilization and remobilization of N in cotton plants. Therefore, we suggest effective methods for accelerating NUE in cotton. This review aims to provide a detailed overview of agronomic and molecular approaches for improving NUE in cotton production, which benefits both the environment and growers.
Collapse
Affiliation(s)
- Muhammad Sohaib Chattha
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Qurban Ali
- Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Haroon
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | | | - Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sadam Hussain
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Tahir Mahmood
- Department of Plant Breeding & Genetics, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Manoj K. Solanki
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Aisha Umar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Waseem Abbas
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Shanza Nasar
- Department of Botany, University of Gujrat Hafiz Hayat Campus, Gujrat, Pakistan
| | - Lauren M. Schwartz-Lazaro
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Lei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
19
|
Melatonin Function and Crosstalk with Other Phytohormones under Normal and Stressful Conditions. Genes (Basel) 2022; 13:genes13101699. [PMID: 36292584 PMCID: PMC9602040 DOI: 10.3390/genes13101699] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
Abstract
Melatonin was discovered in plants in the late nineties, but its role, signaling, and crosstalk with other phytohormones remain unknown. Research on melatonin in plants has risen dramatically in recent years and the role of this putative plant hormone under biotic and abiotic stress conditions has been reported. In the present review, we discuss the main functions of melatonin in the growth and development of plants, its role under abiotic stresses, such as water stress (waterlogging and drought), extreme temperature (low and high), salinity, heavy metal, and light-induced stress. Similarly, we also discuss the role of melatonin under biotic stresses (antiviral, antibacterial, and antifungal effects). Moreover, the present review meticulously discusses the crosstalk of melatonin with other phytohormones such as auxins, gibberellic acids, cytokinins, ethylene, and salicylic acid under normal and stressful conditions and reports melatonin receptors and signaling in plants. All these aspects of melatonin suggest that phytomelatonin is a key player in crop improvement and biotic and abiotic stress regulation.
Collapse
|
20
|
Iqbal HMN, Bilal M, Rodriguez-Couto S. Smart nanohybrid constructs: Concept and designing for environmental remediation. CHEMOSPHERE 2022; 301:134616. [PMID: 35447210 DOI: 10.1016/j.chemosphere.2022.134616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | | |
Collapse
|
21
|
Liang Z, Ali Q, Wang Y, Mu G, Kan X, Ren Y, Manghwar H, Gu Q, Wu H, Gao X. Toxicity of Bacillus thuringiensis Strains Derived from the Novel Crystal Protein Cry31Aa with High Nematicidal Activity against Rice Parasitic Nematode Aphelenchoides besseyi. Int J Mol Sci 2022; 23:ijms23158189. [PMID: 35897765 PMCID: PMC9331774 DOI: 10.3390/ijms23158189] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
The plant parasitic nematode, Aphelenchoides besseyi, is a serious pest causing severe damage to various crop plants and vegetables. The Bacillus thuringiensis (Bt) strains, GBAC46 and NMTD81, and the biological strain, FZB42, showed higher nematicidal activity against A. besseyi, by up to 88.80, 82.65, and 75.87%, respectively, in a 96-well plate experiment. We screened the whole genomes of the selected strains by protein-nucleic acid alignment. It was found that the Bt strain GBAC46 showed three novel crystal proteins, namely, Cry31Aa, Cry73Aa, and Cry40ORF, which likely provide for the safe control of nematodes. The Cry31Aa protein was composed of 802 amino acids with a molecular weight of 90.257 kDa and contained a conserved delta-endotoxin insecticidal domain. The Cry31Aa exhibited significant nematicidal activity against A. besseyi with a lethal concentration (LC50) value of 131.80 μg/mL. Furthermore, the results of in vitro experiments (i.e., rhodamine and propidium iodide (PI) experiments) revealed that the Cry31Aa protein was taken up by A. besseyi, which caused damage to the nematode's intestinal cell membrane, indicating that the Cry31Aa produced a pore-formation toxin. In pot experiments, the selected strains GBAC46, NMTD81, and FZB42 significantly reduced the lesions on leaves by up to 33.56%, 45.66, and 30.34% and also enhanced physiological growth parameters such as root length (65.10, 50.65, and 55.60%), shoot length (68.10, 55.60, and 59.45%), and plant fresh weight (60.71, 56.45, and 55.65%), respectively. The number of nematodes obtained from the plants treated with the selected strains (i.e., GBAC46, NMTD81, and FZB42) and A. besseyi was significantly reduced, with 0.56, 0.83., 1.11, and 5.04 seedling mL-1 nematodes were achieved, respectively. Moreover, the qRT-PCR analysis showed that the defense-related genes were upregulated, and the activity of hydrogen peroxide (H2O2) increased while malondialdehyde (MDA) decreased in rice leaves compared to the control. Therefore, it was concluded that the Bt strains GBAC46 and NMTD81 can promote rice growth, induce high expression of rice defense-related genes, and activate systemic resistance in rice. More importantly, the application of the novel Cry31Aa protein has high potential for the efficient and safe prevention and green control of plant parasitic nematodes.
Collapse
Affiliation(s)
- Zhao Liang
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qurban Ali
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujie Wang
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangyuan Mu
- Shenzhen Batian Ecotypic Engineering Co., Ltd., Shenzhen 518057, China; (G.M.); (X.K.)
| | - Xuefei Kan
- Shenzhen Batian Ecotypic Engineering Co., Ltd., Shenzhen 518057, China; (G.M.); (X.K.)
| | - Yajun Ren
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China;
| | - Qin Gu
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Huijun Wu
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuewen Gao
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: ; Tel.: +86-025-8439-5268
| |
Collapse
|
22
|
Nehra M, Kumar V, Kumar R, Dilbaghi N, Kumar S. Current Scenario of Pathogen Detection Techniques in Agro-Food Sector. BIOSENSORS 2022; 12:489. [PMID: 35884292 PMCID: PMC9313409 DOI: 10.3390/bios12070489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 05/05/2023]
Abstract
Over the past-decade, agricultural products (such as vegetables and fruits) have been reported as the major vehicles for foodborne diseases, which are limiting food resources. The spread of infectious diseases due to foodborne pathogens poses a global threat to human health and the economy. The accurate and timely detection of infectious disease and of causative pathogens is crucial in the prevention and treatment of disease. Negligence in the detection of pathogenic substances can be catastrophic and lead to a pandemic. Despite the revolution in health diagnostics, much attention has been paid to the agro-food sector regarding the detection of food contaminants (such as pathogens). The conventional analytical techniques for pathogen detection are reliable and still in operation. However, laborious procedures and time-consuming detection via these approaches emphasize the need for simple, easy-to-use, and affordable detection techniques. The rapid detection of pathogens from food is essential to avoid the morbidity and mortality originating from the suboptimal nature of empiric pathogen treatment. This review critically discusses both the conventional and emerging bio-molecular approaches for pathogen detection in agro-food.
Collapse
Affiliation(s)
- Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India; (M.N.); (V.K.); (N.D.)
- Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India;
| | - Virendra Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India; (M.N.); (V.K.); (N.D.)
| | - Rajesh Kumar
- Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India;
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India; (M.N.); (V.K.); (N.D.)
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India; (M.N.); (V.K.); (N.D.)
| |
Collapse
|
23
|
Degradation Mechanism of Autophagy-Related Proteins and Research Progress. Int J Mol Sci 2022; 23:ijms23137301. [PMID: 35806307 PMCID: PMC9266641 DOI: 10.3390/ijms23137301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/21/2022] Open
Abstract
In all eukaryotes, autophagy is the main pathway for nutrient recycling, which encapsulates parts of the cytoplasm and organelles in double-membrane vesicles, and then fuses with lysosomes/vacuoles to degrade them. Autophagy is a highly dynamic and relatively complex process influenced by multiple factors. Under normal growth conditions, it is maintained at basal levels. However, when plants are subjected to biotic and abiotic stresses, such as pathogens, drought, waterlogging, nutrient deficiencies, etc., autophagy is activated to help cells to survive under stress conditions. At present, the regulation of autophagy is mainly reflected in hormones, second messengers, post-transcriptional regulation, and protein post-translational modification. In recent years, the degradation mechanism of autophagy-related proteins has attracted much attention. In this review, we have summarized how autophagy-related proteins are degraded in yeast, animals, and plants, which will help us to have a more comprehensive and systematic understanding of the regulation mechanisms of autophagy. Moreover, research progress on the degradation of autophagy-related proteins in plants has been discussed.
Collapse
|
24
|
Ali Q, Yu C, Hussain A, Ali M, Ahmar S, Sohail MA, Riaz M, Ashraf MF, Abdalmegeed D, Wang X, Imran M, Manghwar H, Zhou L. Genome Engineering Technology for Durable Disease Resistance: Recent Progress and Future Outlooks for Sustainable Agriculture. FRONTIERS IN PLANT SCIENCE 2022; 13:860281. [PMID: 35371164 PMCID: PMC8968944 DOI: 10.3389/fpls.2022.860281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/22/2022] [Indexed: 05/15/2023]
Abstract
Crop production worldwide is under pressure from multiple factors, including reductions in available arable land and sources of water, along with the emergence of new pathogens and development of resistance in pre-existing pathogens. In addition, the ever-growing world population has increased the demand for food, which is predicted to increase by more than 100% by 2050. To meet these needs, different techniques have been deployed to produce new cultivars with novel heritable mutations. Although traditional breeding continues to play a vital role in crop improvement, it typically involves long and laborious artificial planting over multiple generations. Recently, the application of innovative genome engineering techniques, particularly CRISPR-Cas9-based systems, has opened up new avenues that offer the prospects of sustainable farming in the modern agricultural industry. In addition, the emergence of novel editing systems has enabled the development of transgene-free non-genetically modified plants, which represent a suitable option for improving desired traits in a range of crop plants. To date, a number of disease-resistant crops have been produced using gene-editing tools, which can make a significant contribution to overcoming disease-related problems. Not only does this directly minimize yield losses but also reduces the reliance on pesticide application, thereby enhancing crop productivity that can meet the globally increasing demand for food. In this review, we describe recent progress in genome engineering techniques, particularly CRISPR-Cas9 systems, in development of disease-resistant crop plants. In addition, we describe the role of CRISPR-Cas9-mediated genome editing in sustainable agriculture.
Collapse
Affiliation(s)
- Qurban Ali
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Chenjie Yu
- Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Amjad Hussain
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mohsin Ali
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sunny Ahmar
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Muhammad Aamir Sohail
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Riaz
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Muhammad Furqan Ashraf
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Dyaaaldin Abdalmegeed
- Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Xiukang Wang
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Muhammad Imran
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agriculture University, Guangzhou, China
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Lei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|