1
|
Deng S, Wang B, Zhang H, Qu R, Sun S, You Q, She Y, Zhang F. Degradation and enhanced oil recovery potential of Alcanivorax borkumensis through production of bio-enzyme and bio-surfactant. BIORESOURCE TECHNOLOGY 2024; 400:130690. [PMID: 38614150 DOI: 10.1016/j.biortech.2024.130690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/23/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Microbial enhanced oil recovery (EOR) has become the focus of oilfield research due to its low cost, environmental friendliness and sustainability. The degradation and EOR capacity of A. borkumensis through the production of bio-enzyme and bio-surfactant were first investigated in this study. The total protein concentration, acetylcholinesterase, esterase, lipase, alkane hydroxylase activity, surface tension, and emulsification index (EI) were determined at different culture times. The bio-surfactant was identified as glycolipid compound, and the yield was 2.6 ± 0.2 g/L. The nC12 and nC13 of crude oil were completely degraded, and more than 40.0 % of nC14-nC24 was degraded by by A. borkumensis. The results of the microscopic etching model displacement and core flooding experiments showed that emulsification was the main mechanism of EOR. A. borkumensis enhanced the recovery rate by 20.2 %. This study offers novel insights for the development of environmentally friendly and efficient oil fields.
Collapse
Affiliation(s)
- Shuyuan Deng
- School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China
| | - Bo Wang
- School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China
| | - Hong Zhang
- School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China
| | - Ruixue Qu
- College of Petroleum Engineering, Yangtze University, Wuhan, Hubei 430100, China
| | - Shanshan Sun
- College of Petroleum Engineering, Yangtze University, Wuhan, Hubei 430100, China; Hubei Cooperative Innovation Center of Unconventional Oil and Gas, Yangtze University, Wuhan, Hubei 430100, China; Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Yangtze University, Wuhan, Hubei 430100, China
| | - Qing You
- School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yuehui She
- College of Petroleum Engineering, Yangtze University, Wuhan, Hubei 430100, China; Hubei Cooperative Innovation Center of Unconventional Oil and Gas, Yangtze University, Wuhan, Hubei 430100, China; Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Yangtze University, Wuhan, Hubei 430100, China
| | - Fan Zhang
- School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China.
| |
Collapse
|
2
|
Chunyan X, Qaria MA, Qi X, Daochen Z. The role of microorganisms in petroleum degradation: Current development and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161112. [PMID: 36586680 DOI: 10.1016/j.scitotenv.2022.161112] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/04/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Petroleum hydrocarbon compounds are persistent organic pollutants, which can cause permanent damage to ecosystems due to their biomagnification. Bioremediation of oil is currently the main solution for the remediation of petroleum hydrocarbon pollutants in ecosystems. Despite several lab studies on oil microbial biodegradation efficiency, still there are various challenges for microorganisms to perform efficiently in outside environments. Herewith, investigating efficient biodegradation technologies through discovering new microorganisms, biodegradation pathways modification, and new bioremediations technologies are in great demand. The degradation of petroleum pollutants by microorganisms and the remediation of contaminated soils are achieved through their key enzymes and metabolic pathways. Although, several challenges hinder the effective biodegradation processes such as the toxic environment, long chains and versatility of petroleum hydrocarbons and the existence of the full metabolism pathways in a single microorganism. There are several developed oil biodegradation strategies by microorganisms such as synthetic biology, biofilm, recombinant technology and microbial consortia. Herewith, the application of multi-omics technology to discover oil-contaminated environments microbial communities, synthetic biology, microbial consortia, and other technologies would help improve the efficiency of microbial remediation.
Collapse
Affiliation(s)
- Xu Chunyan
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Majjid A Qaria
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xu Qi
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Zhu Daochen
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
3
|
Scale-Up of Capsular Polysaccharide Production Process by Haemophilus influenzae Type b Using kLa Criterion. Bioengineering (Basel) 2022; 9:bioengineering9090415. [PMID: 36134961 PMCID: PMC9495314 DOI: 10.3390/bioengineering9090415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022] Open
Abstract
Polyribosyl-ribitol-phosphate (PRP) from Haemophilus influenzae type b (Hib) is an active immunizing molecule used in the production of the vaccine against H. influenzae, and industrial production could contribute to satisfying a world demand especially in developing countries. In this sense, the aim of this study was to establish a scale-up process using the constant oxygen mass transfer coefficient (kLa) such as the criterion for production of PRP in three different sizes of bioreactor systems. Three different kLa values (24, 52 and 80 h−1) were evaluated in which the biological influence in a 1.5 L bioreactor and 52 h−1 was selected to scale-up the production process until a 75 L pilot-scale bioreactor was achieved. Finally, the fed-batch phase was started under a dissolved oxygen concentration (pO2) at 30% of the saturation in the 75 L bioreactor to avoid oxygen limitation; the performance of production presented high efficiency (9.0 g/L DCW-dry cell weight and 1.4 g/L PRP) in comparison with previous scale-up studies. The yields, productivity and kinetic behavior were similar in the three-size bioreactor systems in the batch mode indicating that kLa is possible to use for PRP production at large scales. This process operated under two stages and successfully produced DCW and PRP in the pilot scale and could be beneficial for future bioprocess operations that may lead to higher production and less operative cost.
Collapse
|