1
|
Liu K, Ma Z, Li X, Qiu Y, Liu D, Liu S. N-Doped Carbon Nanowire-Modified Macroporous Carbon Foam Microbial Fuel Cell Anode: Enrichment of Exoelectrogens and Enhancement of Extracellular Electron Transfer. MATERIALS (BASEL, SWITZERLAND) 2023; 17:69. [PMID: 38203925 PMCID: PMC10779606 DOI: 10.3390/ma17010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Microbial fuel cell (MFC) performance is affected by the metabolic activity of bacteria and the extracellular electron transfer (EET) process. The deficiency of nanostructures on macroporous anode obstructs the enrichment of exoelectrogens and the EET. Herein, a N-doped carbon nanowire-modified macroporous carbon foam was prepared and served as an anode in MFCs. The anode has a hierarchical porous structure, which can solve the problem of biofilm blockage, ensure mass transport, favor exoelectrogen enrichment, and enhance the metabolic activity of bacteria. The microscopic morphology, spectroscopy, and electrochemical characterization of the anode confirm that carbon nanowires can penetrate biofilm, decrease charge resistance, and enhance long-distance electron transfer efficiency. In addition, pyrrolic N can effectively reduce the binding energy and electron transfer distance of bacterial outer membrane hemin. With this hierarchical anode, a maximum power density of 5.32 W/m3 was obtained, about 2.5-fold that of bare carbon cloth. The one-dimensional nanomaterial-modified macroporous anodes in this study are a promising strategy to improve the exoelectrogen enrichment and EET for MFCs.
Collapse
Affiliation(s)
- Ke Liu
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Zhuo Ma
- Harbin Institute of Technology, School of Life Science and Technology, Harbin 150001, China
| | - Xinyi Li
- Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, School of Medicine and Health, Harbin 150080, China
| | - Yunfeng Qiu
- Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, School of Medicine and Health, Harbin 150080, China
| | - Danqing Liu
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Shaoqin Liu
- Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, School of Medicine and Health, Harbin 150080, China
| |
Collapse
|
2
|
Gonzalez JM, Aranda B. Microbial Growth under Limiting Conditions-Future Perspectives. Microorganisms 2023; 11:1641. [PMID: 37512814 PMCID: PMC10383181 DOI: 10.3390/microorganisms11071641] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/02/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Microorganisms rule the functioning of our planet and each one of the individual macroscopic living creature. Nevertheless, microbial activity and growth status have always been challenging tasks to determine both in situ and in vivo. Microbial activity is generally related to growth, and the growth rate is a result of the availability of nutrients under adequate or adverse conditions faced by microbial cells in a changing environment. Most studies on microorganisms have been carried out under optimum or near-optimum growth conditions, but scarce information is available about microorganisms at slow-growing states (i.e., near-zero growth and maintenance metabolism). This study aims to better understand microorganisms under growth-limiting conditions. This is expected to provide new perspectives on the functions and relevance of the microbial world. This is because (i) microorganisms in nature frequently face conditions of severe growth limitation, (ii) microorganisms activate singular pathways (mostly genes remaining to be functionally annotated), resulting in a broad range of secondary metabolites, and (iii) the response of microorganisms to slow-growth conditions remains to be understood, including persistence strategies, gene expression, and cell differentiation both within clonal populations and due to the complexity of the environment.
Collapse
Affiliation(s)
- Juan M Gonzalez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, IRNAS-CSIC, E-41012 Sevilla, Spain
| | - Beatriz Aranda
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, IRNAS-CSIC, E-41012 Sevilla, Spain
| |
Collapse
|
3
|
Roy H, Rahman TU, Tasnim N, Arju J, Rafid MM, Islam MR, Pervez MN, Cai Y, Naddeo V, Islam MS. Microbial Fuel Cell Construction Features and Application for Sustainable Wastewater Treatment. MEMBRANES 2023; 13:membranes13050490. [PMID: 37233551 DOI: 10.3390/membranes13050490] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
A microbial fuel cell (MFC) is a system that can generate electricity by harnessing microorganisms' metabolic activity. MFCs can be used in wastewater treatment plants since they can convert the organic matter in wastewater into electricity while also removing pollutants. The microorganisms in the anode electrode oxidize the organic matter, breaking down pollutants and generating electrons that flow through an electrical circuit to the cathode compartment. This process also generates clean water as a byproduct, which can be reused or released back into the environment. MFCs offer a more energy-efficient alternative to traditional wastewater treatment plants, as they can generate electricity from the organic matter in wastewater, offsetting the energy needs of the treatment plants. The energy requirements of conventional wastewater treatment plants can add to the overall cost of the treatment process and contribute to greenhouse gas emissions. MFCs in wastewater treatment plants can increase sustainability in wastewater treatment processes by increasing energy efficiency and reducing operational cost and greenhouse gas emissions. However, the build-up to the commercial-scale still needs a lot of study, as MFC research is still in its early stages. This study thoroughly describes the principles underlying MFCs, including their fundamental structure and types, construction materials and membrane, working mechanism, and significant process elements influencing their effectiveness in the workplace. The application of this technology in sustainable wastewater treatment, as well as the challenges involved in its widespread adoption, are discussed in this study.
Collapse
Affiliation(s)
- Hridoy Roy
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Tanzim Ur Rahman
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Nishat Tasnim
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Jannatul Arju
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Md Mustafa Rafid
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Md Reazul Islam
- Department of Civil Engineering, Louisiana Tech University, Ruston, LA 71270, USA
| | - Md Nahid Pervez
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Yingjie Cai
- Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-Based Textile Materials, Wuhan Textile University, Wuhan 430200, China
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Md Shahinoor Islam
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
- Department of Textile Engineering, Daffodil International University, Dhaka 1341, Bangladesh
| |
Collapse
|
4
|
Madondo NI, Rathilal S, Bakare BF, Tetteh EK. Effect of Electrode Spacing on the Performance of a Membrane-Less Microbial Fuel Cell with Magnetite as an Additive. Molecules 2023; 28:molecules28062853. [PMID: 36985825 PMCID: PMC10058918 DOI: 10.3390/molecules28062853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
A microbial fuel cell (MFC) is a bioelectrochemical system that can be employed for the generation of electrical energy under microbial activity during wastewater treatment practices. The optimization of electrode spacing is perhaps key to enhancing the performance of an MFC. In this study, electrode spacing was evaluated to determine its effect on the performance of MFCs. The experimental work was conducted utilizing batch digesters with electrode spacings of 2.0 cm, 4.0 cm, 6.0 cm, and 8.0 cm. The results demonstrate that the performance of the MFC improved when the electrode spacing increased from 2.0 to 6.0 cm. However, the efficiency decreased after 6.0 cm. The digester with an electrode spacing of 6.0 cm enhanced the efficiency of the MFC, which led to smaller internal resistance and greater biogas production of 662.4 mL/g VSfed. The electrochemical efficiency analysis demonstrated higher coulombic efficiency (68.7%) and electrical conductivity (177.9 µS/cm) for the 6.0 cm, which was evident from the enrichment of electrochemically active microorganisms. With regards to toxic contaminant removal, the same digester also performed well, revealing removals of over 83% for chemical oxygen demand (COD), total solids (TS), total suspended solids (TSS), and volatile solids (VS). Therefore, these results indicate that electrode spacing is a factor affecting the performance of an MFC, with an electrode spacing of 6.0 cm revealing the greatest potential to maximize biogas generation and the degradability of wastewater biochemical matter.
Collapse
Affiliation(s)
- Nhlanganiso Ivan Madondo
- Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Steve Biko Campus, S4 Level 1, Durban 4000, South Africa
| | - Sudesh Rathilal
- Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Steve Biko Campus, S4 Level 1, Durban 4000, South Africa
| | - Babatunde Femi Bakare
- Environmental Pollution and Remediation Research Group, Department of Chemical Engineering, Faculty of Engineering, Mangosuthu University of Technology, P.O. Box 12363, Durban 4026, South Africa
| | - Emmanuel Kweinor Tetteh
- Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Steve Biko Campus, S4 Level 1, Durban 4000, South Africa
| |
Collapse
|
5
|
Schneider G, Pásztor D, Szabó P, Kőrösi L, Kishan NS, Raju PARK, Calay RK. Isolation and Characterisation of Electrogenic Bacteria from Mud Samples. Microorganisms 2023; 11:781. [PMID: 36985354 PMCID: PMC10058994 DOI: 10.3390/microorganisms11030781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
To develop efficient microbial fuel cell systems for green energy production using different waste products, establishing characterised bacterial consortia is necessary. In this study, bacteria with electrogenic potentials were isolated from mud samples and examined to determine biofilm-formation capacities and macromolecule degradation. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identifications have revealed that isolates represented 18 known and 4 unknown genuses. They all had the capacities to reduce the Reactive Black 5 stain in the agar medium, and 48 of them were positive in the wolfram nanorod reduction assay. The isolates formed biofilm to different extents on the surfaces of both adhesive and non-adhesive 96-well polystyrene plates and glass. Scanning electron microscopy images revealed the different adhesion potentials of isolates to the surface of carbon tissue fibres. Eight of them (15%) were able to form massive amounts of biofilm in three days at 23 °C. A total of 70% of the isolates produced proteases, while lipase and amylase production was lower, at 38% and 27% respectively. All of the macromolecule-degrading enzymes were produced by 11 isolates, and two isolates of them had the capacity to form a strong biofilm on the carbon tissue one of the most used anodic materials in MFC systems. This study discusses the potential of the isolates for future MFC development applications.
Collapse
Affiliation(s)
- György Schneider
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary
| | - Dorina Pásztor
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary
| | - Péter Szabó
- Department of Geology and Meteorology, Faculty of Sciences, University of Pécs, Ifjúság Str. 6, H-7624 Pécs, Hungary
| | - László Kőrösi
- Research Institute for Viticulture and Oenology, University of Pécs, Pázmány P. u. 4, H-7634 Pécs, Hungary
| | - Nandyala Siva Kishan
- Centre for Research and Development, SRKR Engineering College, SRKR Marg, China Amiram, Bhimavaram 534204, India
| | | | - Rajnish Kaur Calay
- Institute for Building Energy and Materials Technology, Narvik Campus, UiT Norway’s Arctic University, 8514 Narvik, Norway
| |
Collapse
|
6
|
Hu Y, Han X, Shi L, Cao B. Electrochemically active biofilm-enabled biosensors: Current status and opportunities for biofilm engineering. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|