1
|
Yogesh Kumar K, Prashanth MK, Shanavaz H, Parashuram L, Alharethy F, Jeon BH, Raghu MS. Novel pyrochlore type europium stannate - tungsten disulfide heterostructure for light driven carbon dioxide reduction and nitrogen fixation. ENVIRONMENTAL RESEARCH 2024; 257:119372. [PMID: 38852832 DOI: 10.1016/j.envres.2024.119372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/24/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
The reduction of carbon dioxide (CO2) and nitrogen (N2) to value-added products is a substantial area of research in the fields of sustainable chemistry and renewable energy that aims at reducing greenhouse gas emissions and the production of alternative fuels and chemicals. The current work deals with the synthesis of pyrochlore-type europium stannate (Eu2Sn2O7: EuSnO), tungsten disulfide (WS2:WS), and novel EuSnO/WS heterostructure by a simple and facile co-precipitation-aided hydrothermal method. Using different methods, the morphological and structural analyses of the prepared samples were characterized. It was confirmed that a heterostructure was formed between the cubic EuSnO and the layered WS. Synthesized materials were used for photocatalytic CO2 and N2 reduction under UV and visible light. The amount of CO and CH4 evolved due to CO2 reduction is high in EuSnO/WS (CO = 104, CH4 = 64 μmol h-1 g-1) compared to pure EuSnO (CO = 36, CH4 = 70 μmol h-1 g-1) and WS (CO = 22, CH4 = 1.8 μmol h-1 g-1) under visible light. The same trend was observed even in the N2 fixation reaction under visible light, and the amount of NH4+ produced was found to be 13, 26, and 41 μmol h-1 g-1 in the presence of WS, EuSnO and EuSnO/WS, respectively. Enhanced light-driven activity towards CO2 and N2 reduction reactions in EuSnO/WS is due to the efficient charge separation through the formation of type-II heterostructure, which is in part associated with photocurrent response, photoluminescence, and electrochemical impedence spectroscopic (EIS) results. The EuSnO/WS heterostructure's exceptional stability and reusability may pique the attention of pyrochlore-based composite materials in photocatalytic energy and environmental applications.
Collapse
Affiliation(s)
- K Yogesh Kumar
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Bangalore, 562112, India
| | - M K Prashanth
- Department of Chemistry, BNM Institute of Technology, Banashankari, Bangalore, 560070, India
| | - H Shanavaz
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Bangalore, 562112, India
| | - L Parashuram
- Department of Chemistry, Nitte Meenakshi Institute of Technology, Yelahanka, Bangalore, 560064, India
| | - Fahd Alharethy
- Department of Chemistry, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - M S Raghu
- Department of Chemistry, New Horizon College of Engineering, Outer Ring Road, Bangalore, 560103, India.
| |
Collapse
|
2
|
Zhou Y, Wang T, Wang L, Wang P, Chen F, Bhatt P, Chen S, Cui X, Yang Y, Zhang W. Microbes as carbendazim degraders: opportunity and challenge. Front Microbiol 2024; 15:1424825. [PMID: 39206363 PMCID: PMC11349639 DOI: 10.3389/fmicb.2024.1424825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Carbendazim (methyl benzimidazol-2-ylcarbamate, CBZ) is a systemic benzimidazole carbamate fungicide and can be used to control a wide range of fungal diseases caused by Ascomycetes, Basidiomycetes and Deuteromycetes. It is widely used in horticulture, forestry, agriculture, preservation and gardening due to its broad spectrum and leads to its accumulation in soil and water environmental systems, which may eventually pose a potential threat to non-target organisms through the ecological chain. Therefore, the removal of carbendazim residues from the environment is an urgent problem. Currently, a number of physical and chemical treatments are effective in degrading carbendazim. As a green and efficient strategy, microbial technology has the potential to degrade carbendazim into non-toxic and environmentally acceptable metabolites, which in turn can dissipate carbendazim from the contaminated environment. To date, a number of carbendazim-degrading microbes have been isolated and reported, including, but not limited to, Bacillus, Pseudomonas, Rhodococcus, Sphingomonas, and Aeromonas. Notably, the common degradation property shared by all strains was their ability to hydrolyze carbendazim to 2-aminobenzimidazole (2-AB). The complete mineralization of the degradation products is mainly dependent on the cleavage of the imidazole and benzene rings. Additionally, the currently reported genes for carbendazim degradation are MheI and CbmA, which are responsible for breaking the ester and amide bonds, respectively. This paper reviews the toxicity, microbial degradation of carbendazim, and bioremediation techniques for carbendazim-contaminated environments. This not only summarizes and enriches the theoretical basis of microbial degradation of carbendazim, but also provides practical guidance for bioremediation of carbendazim-contaminated residues in the environment.
Collapse
Affiliation(s)
- Yi Zhou
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Tianyue Wang
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Liping Wang
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Pengfei Wang
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Feiyu Chen
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xiuming Cui
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ye Yang
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wenping Zhang
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
3
|
Yogesh Kumar K, Prashanth MK, Shanavaz H, Parashuram L, Alharethy F, Jeon BH, Raghu MS. Ultrasound assisted fabrication of InVO 4/In 2S 3 heterostructure for enhanced sonophotocatalytic degradation of pesticides. ULTRASONICS SONOCHEMISTRY 2023; 100:106615. [PMID: 37776717 PMCID: PMC10561127 DOI: 10.1016/j.ultsonch.2023.106615] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
A cost effective and environmentally benign ultrasonic method has been developed for the synthesis of InVO4 (InV), In2S3 (InS) and the InVO4/In2S3 heterostructure (InV/InS). All the designed materials were evaluated for their structural, morphological, spectroscopic, and electrochemical characterizations. Materials were examined for photocatalytic, sonocatalytic, and sonophotocatalytic degradation of carbofuran (CBF) and diazinon (DZN) pesticides under visible light. InV/InS showed enhanced degradation of CBF and DZN when compared to InV and InS. Photocatalytic degradation was accelerated by ultrasonication and found to degrade 97 and 98 % of CBF and DZN in 60 and 70 min, respectively. The reaction conditions, like pH, catalyst dosage, acoustic intensity, and ultrasound power, were carefully optimized. Electron spin resonance (ESR) spectroscopy shows the generation of superoxide radical anion and hydroxyl radicals as reactive species during photoredox reaction. The CBF and DZN degradation intermediates were analyzed using liquid chromatography mass spectroscopy (LC-MS) that shows the mineralization of the CBF and DZN to CO2 and H2O. The effect of Cl-, and PO43- were examined towards degradation of CBF and DZN under optimal conditions in the presence of InV/InS. The degradation of CBF and DZN is decreased in presence of Cl-, CO32- and NO3- but PO43- ions does not show any effect on degradation. The bandgap and Mott-Schottky results suggest the existence of type-II heterostructure between InV and InS through the interface. The synthesis of heterostructure and degradation of pesticides utilizes ultrasonic waves, which prove their multiple applications and attract researchers towards the effective use of sonication.
Collapse
Affiliation(s)
- K Yogesh Kumar
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Bangalore 562112, India
| | - M K Prashanth
- Department of Chemistry, BNM Institute of Technology, Banashankari, Bangalore 560070, India
| | - H Shanavaz
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Bangalore 562112, India
| | - L Parashuram
- Department of Chemistry, Nitte Meenakshi Institute of Technology, Yelahanka, Bangalore 560064 India
| | - Fahd Alharethy
- Department of Chemistry, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| | - M S Raghu
- Department of Chemistry, New Horizon College of Engineering, Outer Ring Road, Bangalore, 560103, India.
| |
Collapse
|
4
|
Crapnell RD, Adarakatti PS, Banks CE. Electroanalytical overview: the sensing of carbendazim. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4811-4826. [PMID: 37721714 DOI: 10.1039/d3ay01053h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Carbendazim is a broad-spectrum systemic fungicide that is used to control various fungal diseases in agriculture, horticulture, and forestry. Carbendazim is also used in post-harvest applications to prevent fungal growth on fruits and vegetables during storage and transportation. Carbendazim is regulated in many countries and banned in others, thus, there is a need for the sensing of carbendazim to ensure that high levels are avoided which can result in potential health risks. One approach is the use of electroanalytical sensors which present a rapid, but highly selective and sensitive output, whilst being economical and providing portable sensing platforms to support on-site analysis. In this minireview, we report on the electroanalytical sensing of carbendazim overviewing recent advances, helping to elucidate the electrochemical mechanism and provide conclusions and future perspectives of this field.
Collapse
Affiliation(s)
- Robert D Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| | - Prashanth S Adarakatti
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| |
Collapse
|
5
|
Venegas CJ, Bollo S, Sierra-Rosales P. Carbon-Based Electrochemical (Bio)sensors for the Detection of Carbendazim: A Review. MICROMACHINES 2023; 14:1752. [PMID: 37763915 PMCID: PMC10536525 DOI: 10.3390/mi14091752] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Carbendazim, a fungicide widely used in agriculture, has been classified as a hazardous chemical by the World Health Organization due to its environmental persistence. It is prohibited in several countries; therefore, detecting it in food and environmental samples is highly necessary. A reliable, rapid, and low-cost method uses electrochemical sensors and biosensors, especially those modified with carbon-based materials with good analytical performance. In this review, we summarize the use of carbon-based electrochemical (bio)sensors for detecting carbendazim in environmental and food matrixes, with a particular interest in the role of carbon materials. Focus on publications between 2018 and 2023 that have been describing the use of carbon nanotubes, carbon nitride, graphene, and its derivatives, and carbon-based materials as modifiers, emphasizing the analytical performance obtained, such as linear range, detection limit, selectivity, and the matrix where the detection was applied.
Collapse
Affiliation(s)
- Constanza J. Venegas
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile
| | - Soledad Bollo
- Centro de Investigación de Procesos Redox (CiPRex), Universidad de Chile, Sergio Livingstone Polhammer 1007, Independencia, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Sergio Livingstone Polhammer 1007, Independencia, Santiago 8380492, Chile
| | - Paulina Sierra-Rosales
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile
| |
Collapse
|
6
|
Wang L, Li M, Li B, Wang M, Zhao H, Zhao F. Electrochemical Sensor Based on Laser-Induced Graphene for Carbendazim Detection in Water. Foods 2023; 12:2277. [PMID: 37372489 DOI: 10.3390/foods12122277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Carbendazim (CBZ) abuse can lead to pesticide residues, which may threaten the environment and human health. In this paper, a portable three-electrode sensor based on laser-induced graphene (LIG) was proposed for the electrochemical detection of CBZ. Compared with the traditional preparation method of graphene, LIG is prepared by exposing the polyimide film to a laser, which is easily produced and patterned. To enhance the sensitivity, platinum nanoparticles (PtNPs) were electrodeposited on the surface of LIG. Under optimal conditions, our prepared sensor (LIG/Pt) has a good linear relationship with CBZ concentration in the range of 1-40 μM, with a low detection limit of 0.67 μM. Further, the sensor shows good recovery rates for the detection of CBZ in wastewater, which provides a fast and reliable method for real-time analysis of CBZ residues in water samples.
Collapse
Affiliation(s)
- Li Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Mengyue Li
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Bo Li
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Min Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Hua Zhao
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Fengnian Zhao
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
7
|
Alsulami A, Kumarswamy YK, Prashanth MK, Hamzada S, Lakshminarayana P, Pradeep Kumar CB, Jeon BH, Raghu MS. Fabrication of FeVO 4/RGO Nanocomposite: An Amperometric Probe for Sensitive Detection of Methyl Parathion in Green Beans and Solar Light-Induced Degradation. ACS OMEGA 2022; 7:45239-45252. [PMID: 36530306 PMCID: PMC9753511 DOI: 10.1021/acsomega.2c05729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/22/2022] [Indexed: 05/28/2023]
Abstract
Pesticide usage is one of the significant issues in modern agricultural practices; hence, monitoring pesticide content and its degradation is of utmost importance. A novel and simple one-pot deep eutectic solvent-based solvothermal method has been developed for the synthesis of FeVO4/reduced graphene oxide (FeV/RGO) nanocomposite. The band gap of FeV decreased upon anchoring with RGO. Enhanced activity in the detection and photocatalytic degradation has been achieved in the FeV/RGO nanocomposite compared to pure FeV and RGO. FeV/RGO was used to modify glassy carbon electrode (GCE), and the fabricated electrode was evaluated for its electrochemical detection of methyl parathion (MP). The amperometric technique was found to be more sensitive with a 0.001-260 μM (two linear ranges; 0.001-20 and 25-260 μM) wide linear range and low limit of detection value (0.70 nM). The practical applicability of modified GCE is more selective and sensitive to real samples like river water and green beans. Photocatalytic degradation of MP has been examined using FeV, RGO, and FeV/RGO nanocomposite. FeV/RGO managed to degrade 95% of MP under solar light in 80 min. Degradation parameters were optimized carefully to attain maximum efficiency. Degradation intermediates were identified using liquid chromatography-mass spectrometry analysis. The degradation mechanism has been studied in detail. FeV/RGO could serve as a material of choice in the field of electrochemical sensors as well as heterogeneous catalysis toward environmental remediation.
Collapse
Affiliation(s)
- Abdullah Alsulami
- Department
of Physics, College of Sciences and Arts at ArRass, Qassim University, ArRass51921, Saudi Arabia
| | - Yogesh K. Kumarswamy
- Department
of Chemistry, Faculty of Engineering and Technology, Jain University, Bangalore562112, India
| | | | - Shanavaz Hamzada
- Department
of Chemistry, Faculty of Engineering and Technology, Jain University, Bangalore562112, India
| | | | | | - Byong-Hun Jeon
- Department
of Earth Resources and Environmental Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul04763, Republic of Korea
| | - Madihalli S. Raghu
- Department
of Chemistry, New Horizon College of Engineering, Outer Ring Road, Bangalore560103, India
| |
Collapse
|
8
|
Kumar KY, Prashanth M, Shanavaz H, Parashuram L, Alharti FA, Jeon BH, Raghu M. Green and facile synthesis of strontium doped Nb2O5/RGO photocatalyst: Efficacy towards H2 evolution, benzophenone-3 degradation and Cr(VI) reduction. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
9
|
Sakthi Priya T, Nataraj N, Chen TW, Chen SM, Kokulnathan T. Synergistic formation of samarium oxide/graphene nanocomposite: A functional electrocatalyst for carbendazim detection. CHEMOSPHERE 2022; 307:135711. [PMID: 35843428 DOI: 10.1016/j.chemosphere.2022.135711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Herein, an electrochemical sensor based on samarium oxide anchored, reduced graphene oxide (Sm2O3/RGO) nanocomposite was developed for the rapid detection of carbendazim (CBZ). Different characterization methods were infused to deeply examine the morphology, composition, and elemental state of Sm2O3/RGO nanocomposite. The Sm2O3/RGO modified electrode exhibits an excellent electro-catalytic performance toward CBZ detection with a peak potential of +1.04 V in phosphate buffer solution (pH 3.0), which is superior to the RGO-, Sm2O3- and bare- electrodes. This remarkable activity can be credited to the synergetic effect generated by the robust interaction between Sm2O3 and RGO, resulting in a well-enhanced electrochemical sensing ability. Impressively, the fabricated sensor shows improved electrochemical performance in terms of the wide working range, detection limit, and strong sensitivity. On a peculiar note, the electrochemical sensing performances of CBZ detection based on Sm2O3/RGO nanocomposite demonstrate an extraordinary behavior compared to the prior documented electro-catalyst. In addition, the fabricated Sm2O3/RGO sensor also displays good operational stability, reproducibility, and repeatability towards the detection of CBZ. Furthermore, it was successfully applied to the CBZ detection in food and environmental water samples with satisfactory recovery. In accordance with our research findings, the Sm2O3/RGO nanocomposite could be used as an electro-active material for effectual electrochemical sensing of food and environmental pollutants.
Collapse
Affiliation(s)
- Thangavelu Sakthi Priya
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Nandini Nataraj
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei, 106, Taiwan; Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan.
| | - Thangavelu Kokulnathan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan; Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 106, Taiwan
| |
Collapse
|
10
|
Gu Y, Guo B, Yi Z, Wu X, Zhang J, Yang H. Synthesis of a Self‐assembled Dual Morphologies Ag‐NPs/SrMoO
4
Photocatalyst with LSPR Effect for the Degradation of Methylene Blue Dye. ChemistrySelect 2022. [DOI: 10.1002/slct.202201274] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yufen Gu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals Lanzhou University of Technology Lanzhou 730050 China
| | - Bobo Guo
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals Lanzhou University of Technology Lanzhou 730050 China
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties Southwest University of Science and Technology Mianyang 621010 China
| | - Xianwen Wu
- School of Chemistry and Chemical Engineering Jishou University Jishou 416000 China
| | - Jiao Zhang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals Lanzhou University of Technology Lanzhou 730050 China
| | - Hua Yang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals Lanzhou University of Technology Lanzhou 730050 China
| |
Collapse
|