1
|
Ullah R, Farias J, Feyissa BA, Tsui MTK, Chow A, Williams C, Karanfil T, Ligaba-Osena A. Combined effects of polyamide microplastic and sulfamethoxazole in modulating the growth and transcriptome profile of hydroponically grown rice (Oryza sativa L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175909. [PMID: 39233070 DOI: 10.1016/j.scitotenv.2024.175909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
The use of reclaimed water from wastewater treatment plants for irrigation has a risk of introducing micropollutants such as microplastics (MPs) and antimicrobials (AMs) into the agroecosystem. This study was conducted to investigate the effects of single and combined treatment of 0.1 % polyamide (PA ∼15 μm), and varying sulfamethoxazole (SMX) levels 0, 10, 50, and 150 mg/L on rice seedlings (Oryza sativa L.) for 12 days. The study aimed to assess the impact of these contaminants on the morphological, physiological, and biochemical parameters of the rice plants. The findings revealed that rice seedlings were not sensitive to PA alone. However, SMX alone or in combination with PA, significantly inhibited shoot and root growth, total biomass, and affected photosynthetic pigments. Higher concentrations of SMX increased antioxidant enzyme activity, indicating oxidative stress. The roots had a higher SMX content than the shoots, and the concentration of minerals such as iron, copper, and magnesium were reduced in roots treated with SMX. RNA-seq analysis showed changes in the expression of genes related to stress, metabolism, and transport in response to the micropollutants. Overall, this study provides valuable insights on the combined impacts of MPs and AMs on food crops, the environment, and human health in future risk assessments and management strategies in using reclaimed water.
Collapse
Affiliation(s)
- Raza Ullah
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27402, USA
| | - Julia Farias
- USDA-ARS, US Arid Land Agricultural Research Center, 21881 N. Cardon Ln, Maricopa, AZ 85138, USA
| | | | - Martin Tsz-Ki Tsui
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27402, USA; School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, Shatin, New Territories, China; Earth and Environmental Sciences Program, The Chinese University of Hong Kong, Hong Kong SAR, Shatin, China
| | - Alex Chow
- Earth and Environmental Sciences Program, The Chinese University of Hong Kong, Hong Kong SAR, Shatin, China
| | - Clinton Williams
- USDA-ARS, US Arid Land Agricultural Research Center, 21881 N. Cardon Ln, Maricopa, AZ 85138, USA
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
| | - Ayalew Ligaba-Osena
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27402, USA.
| |
Collapse
|
2
|
Effects of Co-Digestion Sludge Application on Soil Productivity. Processes (Basel) 2022. [DOI: 10.3390/pr10102097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Anaerobic digestion and agricultural use of sewage sludge are effective methods to treat and dispose of sewage sludge, respectively. Then, the anaerobic digested sewage sludge is applied in agricultural land and the improvement of soil properties can be expected. In this study, with the purpose of evaluating the potential of co-digestion sludge for agricultural use, plot experiments with two vegetable species (radish and Chinese cabbage) and three application dosages were carried out in a short term of six months. Focus was on soil physical properties, soil nutrient change and plant growth responses during the whole process. Results showed that application of co-digestion sludge had little effect on soil physical properties, including the bulk density, porosity, capillary porosity and non-capillary porosity. However, after the application of co-digestion sludge, the maximum increase in content of organic matter, total nitrogen, hydrolysable nitrogen, total phosphorus and available phosphorus in soil reached 51%, 125%, 212%, 15% and 87%, respectively, which supplied the available nutrients quickly and continuously. The application of co-digestion sludge promoted the growth of radish and Chinese cabbage, which was observed through increase of the leaf, root biomass and plants height. Consequently, co-digestion sludge has a good application prospect for improving soil productivity as fertilizer.
Collapse
|
3
|
Zorena K, Jaskulak M, Michalska M, Mrugacz M, Vandenbulcke F. Air Pollution, Oxidative Stress, and the Risk of Development of Type 1 Diabetes. Antioxidants (Basel) 2022; 11:1908. [PMID: 36290631 PMCID: PMC9598917 DOI: 10.3390/antiox11101908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
Despite multiple studies focusing on environmental factors conducive to the development of type 1 diabetes mellitus (T1DM), knowledge about the involvement of long-term exposure to air pollution seems insufficient. The main focus of epidemiological studies is placed on the relationship between exposure to various concentrations of particulate matter (PM): PM1, PM2.5, PM10, and sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (O3), versus the risk of T1DM development. Although the specific molecular mechanism(s) behind the link between increased air pollution exposure and a higher risk of diabetes and metabolic dysfunction is yet unknown, available data indicate air pollution-induced inflammation and oxidative stress as a significant pathway. The purpose of this paper is to assess recent research examining the association between inhalation exposure to PM and associated metals and the increasing rates of T1DM worldwide. The development of modern and more adequate methods for air quality monitoring is also introduced. A particular emphasis on microsensors, mobile and autonomous measuring platforms, satellites, and innovative approaches of IoT, 5G connections, and Block chain technologies are also presented. Reputable databases, including PubMed, Scopus, and Web of Science, were used to search for relevant literature. Eligibility criteria involved recent publication years, particularly publications within the last five years (except for papers presenting a certain novelty or mechanism for the first time). Population, toxicological and epidemiological studies that focused particularly on fine and ultra-fine PM and associated ambient metals, were preferred, as well as full-text publications.
Collapse
Affiliation(s)
- Katarzyna Zorena
- Department of Immunobiology and Environment Microbiology, Faculty of Health Sciences, Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, Dębinki 7, 80-210 Gdańsk, Poland
| | - Marta Jaskulak
- Department of Immunobiology and Environment Microbiology, Faculty of Health Sciences, Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, Dębinki 7, 80-210 Gdańsk, Poland
| | - Małgorzata Michalska
- Department of Immunobiology and Environment Microbiology, Faculty of Health Sciences, Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, Dębinki 7, 80-210 Gdańsk, Poland
| | - Małgorzata Mrugacz
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, Kilinskiego 1, 15-089 Białystok, Poland
| | - Franck Vandenbulcke
- Laboratoire de Génie Civil et Géo-Environnement, Univ. Lille, IMT Lille Douai, University Artois, YncreaHauts-de-France, ULR4515-LGCgE, F-59000 Lille, France
| |
Collapse
|