1
|
Zhang H, Nie Y, Zhao S, Wu L, Xi X, Xu L, Fang Y, Long X, Liu X. Distribution characteristics and transport pathways of soil microplastics in coral reef islands with different developmental stages and human activities. MARINE POLLUTION BULLETIN 2025; 215:117848. [PMID: 40138955 DOI: 10.1016/j.marpolbul.2025.117848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Microplastics have attracted substantial attention on remote coral sand islands owing to their delicate ecosystems. However, the distribution, transport pathways, and control mechanisms of soil microplastics on these islands are yet to be elucidated. The coral reef islands of China's Xisha Archipelago in the South China Sea are at varying stages of development and experience differing levels of human activity, rendering them an ideal location to investigate the environmental characteristics of microplastics. This study conducted a comparative analysis of the distribution characteristics of microplastics in surface soils and beach sands, which were collected from coral cays and islands. We further analyzed the potential impacts of plant cover, geomorphology, soil environmental factors and human activities on accumulation and transport of microplastics. The results show that their abundance varies from 1068 to 1616 particles/kg on the different reef islands. Total organic carbon and dissolved organic carbon in the soils exert a significant influence on the accumulation of microplastics. The abundance of microplastics in the exposed areas showed an increasing trend with the degree of island development, and the human activities have a significant impact on the distribution of microplastics across the islands. Analysis of the microplastic abundance at different locations of the atoll reveals that ocean currents and monsoons are the primary drivers of microplastic accumulation on the coral reef islands. This study provides a scientific basis for the management of microplastic pollution and environmental conservation on remote islands.
Collapse
Affiliation(s)
- Haiyang Zhang
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Lithospheric and Environmental Coevolution, University of Science and Technology of China, Hefei 230026, China
| | - Yaguang Nie
- Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei 230601, China
| | - Sanping Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Libin Wu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xianglong Xi
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Lithospheric and Environmental Coevolution, University of Science and Technology of China, Hefei 230026, China
| | - Liqiang Xu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Youfei Fang
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Lithospheric and Environmental Coevolution, University of Science and Technology of China, Hefei 230026, China
| | - Xuanqi Long
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Lithospheric and Environmental Coevolution, University of Science and Technology of China, Hefei 230026, China
| | - Xiaodong Liu
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Lithospheric and Environmental Coevolution, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
2
|
Botterell ZLR, Coppock RL, Gomiero A, Lindeque PK, Piarulli S, Rees T, Sørensen L, Cole M. Acute and partial life-cycle toxicity of a tri-polymer blend of microplastics in the copepod Acartia tonsa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126105. [PMID: 40120844 DOI: 10.1016/j.envpol.2025.126105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/03/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Microplastics are a prolific environmental contaminant that pose a risk to marine organisms. Ecotoxicological studies have identified microplastics can cause sub-lethal harm to aquatic biota. However, prior studies often lack comparability and environmental relevance, for example focussing upon monodisperse beads at extremely high concentrations. Copepods are keystone marine taxa that play vital roles in the marine food web and biogeochemical cycling. In this study, we adapted ISO methods to conduct acute and partial life-cycle toxicity tests exposing adult and juvenile life stages of the copepod Acartia tonsa to a fully characterised tri-polymer microplastic blend comprising cryoground polyethylene, polypropylene, and nylon particles (5-100 μm) at concentrations ranging 0-1000 μg L-1. The tests considered the toxicity of microplastics on a wide number of endpoints including adult survival, algal ingestion rates, egg production and size, larval development ratio and juvenile survival. Mortality, egg size and larval development ratio proved to be the most sensitive endpoints. The tri-polymer blend had an LC5072h value of 182 μg L-1 providing a baseline for future toxicity testing using this method.
Collapse
Affiliation(s)
- Zara L R Botterell
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Plymouth, PL1 3DH, United Kingdom; Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, United Kingdom
| | - Rachel L Coppock
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Plymouth, PL1 3DH, United Kingdom
| | - Alessio Gomiero
- NORCE Climate and Environment dep, Mekjarvik 12, 4072, Randaberg, Norway
| | - Penelope K Lindeque
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Plymouth, PL1 3DH, United Kingdom
| | - Stefania Piarulli
- Department of Climate and Environment, SINTEF Ocean, Brattørkaia 17C, 7010, Trondheim, Norway
| | - Thomas Rees
- PML Applications, Plymouth, PL1 3DH, United Kingdom
| | - Lisbet Sørensen
- Department of Climate and Environment, SINTEF Ocean, Brattørkaia 17C, 7010, Trondheim, Norway; Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen, 7491 Trondheim, Norway
| | - Matthew Cole
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Plymouth, PL1 3DH, United Kingdom.
| |
Collapse
|
3
|
Yücel N, Kılıç E. Occurrence and human exposure risk of microplastics in commercially important shrimp species from Northeastern Mediterranean Sea. MARINE POLLUTION BULLETIN 2025; 214:117796. [PMID: 40058327 DOI: 10.1016/j.marpolbul.2025.117796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 04/02/2025]
Abstract
Microplastics (MPs) are ubiquitous pollutants in marine environment and monitoring studies have been conducted to understand microplastic presence in aquatic biota. However, studies addressing the microplastic abundance in invertible species are scant. This study aims to investigate presence of ingested microplastics in three commercial shrimp species (Metapenaeus monoceros, Plesionika martia and Melicertus hathor). Mean microplastic abundance (with standard error) in the digestive organs was found as 0.76 ± 1.0 MPs/ind and 0.86 ± 1.5 MPs/g wet weight. No significant difference was detected between species. Fiber (87 %), black (53 %), <500 μm (62 %) microplastic particles was dominant. A negative correlation was found between shrimp weight and ingested microplastic amount (r:-0.46, p:0.005). FTIR analysis showed polyethylene (PE) and polypropylene (PP) as identified polymers. Results proved microplastic exposure in shrimp species from İskenderun Bay and average of 14 to 441 MPs per year could be transferred to human body upon consumption. Therefore, study results showed the microplastic exposure risk depending on consumption of crustacean species and underlined the need of protective measures.
Collapse
Affiliation(s)
- Nebil Yücel
- İskenderun Technical University, Faculty of Marine Science and Technology, Türkiye.
| | - Ece Kılıç
- İskenderun Technical University, Faculty of Marine Science and Technology, Türkiye.
| |
Collapse
|
4
|
Huang X, Yu J, Chen X, Hou W, Liu H, Kim Y. Spatiotemporal variations, source apportionment, and cross-regional impacts of microplastics in surface seawater of Chinese Marginal Seas. MARINE POLLUTION BULLETIN 2025; 214:117807. [PMID: 40073530 DOI: 10.1016/j.marpolbul.2025.117807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/13/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
Microplastics (MPs) are widely distributed as a global pollutant, with dynamic patterns driven by horizontal diffusion and vertical mixing in marine ecosystems across different hydrological seasons and regions. This study employed MATLAB for image processing and interactive operations to extract data from existing studies on the Chinese Marginal Seas conducted from 2016 to 2022, focusing on the distribution, sources, and transport processes of MPs. The results revealed that the Bohai Sea exhibited the highest pollution levels during both the rainy (9328.30 particles/m3) and dry (8665.80 particles/m3) seasons. The Yangtze River Estuary, the Pearl River Estuary, and the Bohai Bay are three hotspot regions that may significantly contribute to the enrichment of MPs in surrounding seas. The distance-similarity decay relationship indicated stronger correlations in the South China Sea and Bohai Sea during the rainy season, and in the East China Sea during the dry season. Derived from the analysis using the Positive Matrix Factorization model, it was found that, apart from the South China Sea where PE and PAN proportions were higher, PE and PP dominated the MP composition. Highly polluting and difficult-to-degrade industrial manufacturing and plastic packaging were identified as the primary sources, while the Bohai Sea and Yellow Sea posed higher transport risks, may serve as sources of pollution to the surrounding regions.
Collapse
Affiliation(s)
- Xudong Huang
- College of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jianghua Yu
- College of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Xi Chen
- Marine Ecology Laboratory, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Wanli Hou
- College of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Haiyang Liu
- College of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Youngchul Kim
- Department of Environmental Engineering, Hanseo University, Seosan City 356-706, Republic of Korea
| |
Collapse
|
5
|
Li W, Meng F. Microplastics in marine systems: A review of sources and sinks, typical environmental behaviors, and biological effects. MARINE POLLUTION BULLETIN 2025; 214:117758. [PMID: 40037102 DOI: 10.1016/j.marpolbul.2025.117758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
Marine microplastics (MPs), whether originating from household and industrial production or stemming from the degradation of larger plastic fragments, have currently attracted significant global attention among the scientific community. The transport and deposition of MPs, characterized by their small size and large quantity, under oceanic hydrodynamics result in the contamination of a wide range of areas. Furthermore, MPs are capable of carrying metals and organic pollutants that constitute composite pollutants. The additives it carries will gradually release harmful substances during the degradation process. Once ingested by aquatic organisms and amplified by the food chain, these pollutants can adversely affect the survival and growth of marine flora and fauna, ultimately posing potential threats to humans. In this review, the major sources and sinks of MPs are described, considering the pollution of marine ecosystems. Additionally, typical environmental behaviors of MPs including their migration and accumulation in the ocean, their combined ability with heavy metals and organic pollutants, their leaching of additives, and their abiotic and biotic degradation pathways are discussed. The adverse effects on marine organisms resulting from ingestion and translocation of MPs are also reviewed herein. Even though the number of studies on MPs-associated environmental impacts is increasing rapidly, this review underscores that there is a pressing necessity to achieve an integrated assessment of MPs' impacts on marine ecology in order to address existing and future knowledge gaps.
Collapse
Affiliation(s)
- Wenlu Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
6
|
Das RS, Mahatab Uddin SM, Gündoğdu S, Afrin JK, Jahan N, Abedin MRB, Chowdhury S, Nahian SA, Mustafa MG, Siddique MAM. Unveiling Microplastics in Commercial Brackish Water Fishes from the Lower Meghna River Estuary of Bangladesh. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 114:68. [PMID: 40281122 PMCID: PMC12031850 DOI: 10.1007/s00128-025-04048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Microplastics (MPs) pose a persistent global threat and have entered almost every component of the ecosystem and seafood items. This study aimed to identify and characterize MPs in three widely edible fishes in the lower Meghna River estuary of Bangladesh and assess the polymer hazard index. Gastrointestinal tracts (GIT) of fish were collected and digested with KOH to extract MPs, and the polymer was confirmed by FTIR analysis. The species with the highest mean MP abundance was M. gulio (22.89 ± 8.91 MPs/GIT), followed by P. paradiseus (10.78 ± 4.29) and O. pama (15.11 ± 3.55). Fibers were predominant MPs, comprising 73.20-91.75% of the total particles. Blue, red, and black were the dominant colors of MPs, while 81.07-93.81% particles were between 500 and 1000 μm. Five distinct polymers, polypropylene, polyethylene, polyethylene terephthalate, Polystyrene, and Nylon 6, were detected in the GIT of these fishes. The study unveiled a significant correlation (r2 = 0.223, p = 0.013) between MP incidence and the total length of fish. The polymer hazard index of the selected fishes showed the risk category IV (Danger), which is alarming. A risk category IV indicates that exposure to polymer, directly or indirectly through the food chain, may result in severe health consequences for humans as well as wildlife. With these detailed insights into MPs in most consumable fishes, the study highlights the comprehensive risks posed by MPs that could be useful for strategies to mitigate this environmental challenge.
Collapse
Affiliation(s)
- Razat Suvra Das
- Department of Oceanography, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - S M Mahatab Uddin
- Department of Oceanography, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Sedat Gündoğdu
- Department of Basic Sciences, Faculty of Fisheries, Cukurova University, Adana, 01330, Turkey
| | - Jannatul Kubra Afrin
- Department of Oceanography, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Nusrat Jahan
- Department of Oceanography, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Rubaet Bin Abedin
- Department of Oceanography, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | | | - Sultan Al Nahian
- Bangladesh Oceanographic Research Institute, Cox's Bazar, 4730, Bangladesh
| | - M Golam Mustafa
- Department of Oceanography, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Mohammad Abdul Momin Siddique
- Department of Oceanography, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, Vodnany, 389 25, Czech Republic.
| |
Collapse
|
7
|
Lu H, Ni Z, Wang Y, Ye S. Deposition characteristics of microplastics in coral reef fish with different feeding habits from the Xisha Islands Waters, South China Sea. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 378:124736. [PMID: 40048976 DOI: 10.1016/j.jenvman.2025.124736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/16/2025]
Abstract
Over the past decade, awareness of plastic pollution has significantly increased, leading to a focus on its potential adverse effects on biota, including the ingestion of microplastics by fish. This study investigates the abundance, composition, and characteristics of microplastics in the gills and gastrointestinal tracts (GITs) of 96 coral reef fish with different feeding habits (herbivorous fish: Scarus rivulatus, Naso lituratus, and Acanthurus triostegus; omnivorous fish: Abudefduf vaigensis; carnivorous fish: Epinephelus merra) from the Xisha Islands Waters, South China Sea. The relationships between microplastic abundance and fish length, weight, and feeding habits were also analyzed. Results show that 97.92% of the sampled coral reef fish contained microplastics. The average abundance of microplastics in the gills and GITs was 1.09 ± 0.25 items individual-1 and 1.74 ± 0.26 items individual-1, respectively. The predominant shapes of microplastics were fibers, with black and blue being the most common colors. Most microplastics (90%) were smaller than 1 mm, and the main polymer types were PET, CP, PE, and PP. Additionally, the GITs contained more microplastics than the gills. Unlike the scope of previous studies, this study newly found the following two points: 1.Herbivorous fish had higher microplastic content than omnivorous fish, while carnivorous fish had the lowest, likely due to herbivorous fish feeding primarily on microplastic-polluted coral reefs. 2.The abundance of microplastics in the gills and GITs was not related to gill weight or GITs weight, however, the abundance of microplastics was significantly correlated with fish body length and body weight.
Collapse
Affiliation(s)
- Huajie Lu
- College of Marine Biological Resources and Management, Shanghai Ocean University, Shanghai, 201306, China; Center for Marine Sciences and Technology of North Carolina State University, Morehead City, NC, 27607, USA; National Distant-Water Fisheries Engineering Research Center, Shanghai Ocean University, Shanghai, 201306, China.
| | - Zhenyu Ni
- College of Marine Biological Resources and Management, Shanghai Ocean University, Shanghai, 201306, China
| | - Yongqin Wang
- College of Marine Biological Resources and Management, Shanghai Ocean University, Shanghai, 201306, China
| | - Siqi Ye
- College of Marine Biological Resources and Management, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
8
|
Jolaosho TL, Rasaq MF, Omotoye EV, Araomo OV, Adekoya OS, Abolaji OY, Hungbo JJ. Microplastics in freshwater and marine ecosystems: Occurrence, characterization, sources, distribution dynamics, fate, transport processes, potential mitigation strategies, and policy interventions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118036. [PMID: 40107217 DOI: 10.1016/j.ecoenv.2025.118036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/08/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025]
Abstract
Most of the literature on microplastics (MPs) focuses on freshwater or terrestrial ecosystems, frequently overlooking their interconnections with the marine environments. This oversight is worrying given that both ecosystems serve as primary pathways for the introduction of MPs into marine environments. This review synthesizes existing literature on MPs in both freshwater and marine ecosystems across all six continents. The most commonly produced plastic polymers in industry are polyethylene (36 %) and polypropylene (21 %), and studies revealed that these two materials are the most abundant in aquatic ecosystems. Primary and secondary MPs originate from a range of sources including land-based disposal, the ocean, airborne deposition, wastewater treatment facilities, automobiles, pharmaceuticals and personal care products, synthetic textiles, and insect repellents. Notably, secondary MPs, which are formed from the breakdown of larger plastic items comprise approximately 69-81% of marine debris, especially in urbanized, densely populated areas. The inconsistencies of the methodologies (sampling, extraction, and quantification) and the units employed for result presentations are part of the major limitations in MPs research. Environmental phenomena such as heteroaggregation, weathering, adsorption, leaching, and fragmentation are the major factors influencing the behavior, fate, and degradation process of plastic particles. The physicochemical properties of plastic polymers, such as density, crystallinity, as well as bioturbation, meteorological forces, and wind actions, including currents, waves, and tides, are responsible for biofouling, aggregation, sinking into the bottom sediment, resuspension, and the vertical, horizontal, and spatiotemporal distributions and transport of MPs. The potential solutions to mitigate plastic pollution are grounded in the 3Rs framework, which includes reducing production and consumption, advancing the biotechnological, chemical and microbial development of degradable polymers, promoting reusable plastic products with lower environmental impacts over their lifetimes, and recycling waste into new products. The regulatory policies on single-use plastics commonly involve permanent bans and financial penalties for violators. In addition, nations such as the United States, the Netherlands, and northern Europe have introduced economic incentives to encourage the return of reusable materials to reduce plastic waste and the resulting envrionmental pollution.
Collapse
Affiliation(s)
- Toheeb Lekan Jolaosho
- Faculty of Spatial Science, University of Groningen, Netherlands; Department of Fisheries, Faculty of Science, Lagos State University, Ojo, Lagos State, Nigeria; Faculty of Marine Science, University of Las Palmas de Gran Canaria, Spain; Aquaculture and Fisheries Management, Lagos State University of Science and Technology, Nigeria.
| | | | | | | | | | | | | |
Collapse
|
9
|
Liang J, Niu T, Zhang L, Yang Y, Li Z, Liang Z, Yu K, Gong S. Polystyrene microplastics exhibit toxic effects on the widespread coral symbiotic Cladocopium goreaui. ENVIRONMENTAL RESEARCH 2025; 268:120750. [PMID: 39755198 DOI: 10.1016/j.envres.2025.120750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/22/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Within the coral reef habitat, members of the Symbiodiniaceae family stand as pivotal symbionts for reef-building corals. However, the physiological response of Symbiodiniaceae on microplastics are still poorly understood. Research conducted in this investigation assessed the harmful impact of polystyrene microparticles (PS-MPs) on Cladocopium goreaui, a Symbiodiniaceae species with a broad distribution. The results showed that micrometre-sized PS-MPs had a greater toxic effect on C. goreaui than nanometre-sized PS-MPs, and the growth inhibition rate of a concentration of 20 mg/L with 10 μm-sized PS-MPs on C. goreaui was as high as 62.9%-86%, which almost completely inhibited cell proliferation. Exposure to 10 μm PS-MPs significantly increased cell damage, for instance, the concentration of extracellular polymeric substance and malondialdehyde have increased by 161.6%-184.4% and 261.8%-896% on days 10-20 respectively. Furthermore, When PS-MPs inhibited the photosynthesis of C. goreaui, it could ensure their typical photosynthetic activity maintained by increasing their chlorophyll levels, and the increase in chlorophyll concentration is proportional to the level of inhibition experienced. However, Exposure to 10 μm PS-MPs could damage the chloroplasts of C. goreaui, leading to a decrease in the ability to synthesize photosynthetic pigments and subsequently resulting in a reduction in photosynthetic capacity. The morphology and genetic activity of C. goreaui suggest that PS-MPs primarily induce cellular shrinkage and distortion, as well as the disintegration and impairment of nuclear and chloroplastic structures, concurrently eliciting a greater number of suppressed genes, predominantly those associated with the function of succinate dehydrogenase, the attachment to tetrapyrroles, the binding of haem, and the handling of iron ions, including activities related to oxidoreduction. The investigation examined the adverse impacts of PS-MPs on a crucial coral symbiont (Symbiodiniaceae) and the beneficial reaction of these algal organisms, enhancing comprehension of how microplastic pollution affects the coral reef ecosystem.
Collapse
Affiliation(s)
- Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| | - Tianyi Niu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Li Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yating Yang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Zhicong Li
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Zhuqing Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510030, China.
| | - Sanqiang Gong
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| |
Collapse
|
10
|
Yang Z, Zhang J, Viyakarn V, Sakaguchi M, Oka S, Isobe A, Arakawa H. Influence of mesh selectivity on risk assessment of marine microplastics. MARINE POLLUTION BULLETIN 2025; 212:117538. [PMID: 39793173 DOI: 10.1016/j.marpolbul.2025.117538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/25/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
In this study, environmental microplastic samples (>30 μm) were collected from surface seawater and the water column, characterized, and used to assess ecological risks. The influence of mesh selectivity on ecological risks was also evaluated through subsampling. Results show that surface microplastic concentrations (>30 μm) range from 92 to 3306 pieces/m3 along Japan's southwest coast, with significant increases at Stas. 2 and 1. Subsurface vertical concentration near Okinawa ranges from 991 to 1992 pieces/m3, with denser, more toxic polymers more frequently observed in deeper waters, suggesting that polymer types may be sorted by marine structure. Risk assessments revealed very high risks near main islands and populated regions, while remote regions had lower risks. Further analysis revealed that ecological risk estimates are significantly influenced by mesh selectivity, with variations in particle size distribution and polymer type composition resulting in changes of up to 100-fold at the same location when different mesh sizes were used, suggesting that current framework is not ideal for risk assessment of microplastics. This study is the first to demonstrate that samplers with different mesh sizes can lead to substantial differences in risk assessments, even at the same location. These findings underscore the critical impact of mesh selectivity on ecological risk estimates and highlight the need for standardized sampling protocols in microplastic research.
Collapse
Affiliation(s)
- Zijiang Yang
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo 108-8477, Japan.
| | - Jiaqi Zhang
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo 108-8477, Japan
| | - Voranop Viyakarn
- Aquatic Resources Research Institute, Chulalongkorn University, 254 Institute Building 3, Pyathai Road, Patumwan, Bangkok, Thailand.
| | - Masayuki Sakaguchi
- Center for Marine Research and Operations, Tokyo University of Marine Science and Technology, 5-7, Konan-4, Minato, Tokyo 108-8477, Japan.
| | - Shinya Oka
- Center for Marine Research and Operations, Tokyo University of Marine Science and Technology, 5-7, Konan-4, Minato, Tokyo 108-8477, Japan.
| | - Atsuhiko Isobe
- Center for Ocean Plastic Studies, Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-Koen, Kasuga 816-8580, Japan.
| | - Hisayuki Arakawa
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo 108-8477, Japan.
| |
Collapse
|
11
|
Ni Z, Chen X, Zhang M, Lu C, Ji X, Yuan L, Chen C, Chen Z, Ye J, Yang J. Microplastics in the surface waters of the northern South China Sea: Interannual variation and potential ecological risks. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106947. [PMID: 39778252 DOI: 10.1016/j.marenvres.2025.106947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Microplastic pollution in marine environments has become a global concern due to its potential ecological risks. However, long-term data on microplastic distribution are scare, hindering the assessment of the ecological threats. This study monitored microplastics pollution in the surface water of the northern South China Sea from 2019 to 2023. The average abundance of microplastics exhibited an increasing trend from 2019 to 2021 and a subsequent decrease from 2021 to 2023 in both the Pearl River Estuary and Zhanjiang offshore waters. Conversely, a steady annual decrease was observed in the surface waters of Beibu Gulf from 2020 to 2023. The spatial variability of microplastic hotspot across different years and regions. Microplastics predominantly ranged from 1 to 2 mm in size, with fragments and fibers being the most common shapes and transparent and white colors being the most prevalent. The primary chemical components of microplastics were polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET). No significant inter-annual differences were observed in the physicochemical characteristics of microplastics. The pollution load index (PLI) indicated medium to low levels of microplastic pollution, with the potential ecological risk index (PERI) suggesting a low level of ecological risk, implying a minimal threat to the marine ecosystem. This study first revealed the annual variations in microplastic pollution and their potential ecological risks in the northern South China Sea, providing crucial data support for the future management and control of marine microplastic pollution.
Collapse
Affiliation(s)
- Zhixin Ni
- South China Sea Ecological Center of Ministry of Natural Resources (MNR), Nansha Islands Coral Reef Ecosystem National Observation and Research Station, & Key Laboratory of Marine Environmental Survey Technology and Application of MNR, Guangzhou, 510300, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou, 510301, China
| | - Xin Chen
- South China Sea Ecological Center of Ministry of Natural Resources (MNR), Nansha Islands Coral Reef Ecosystem National Observation and Research Station, & Key Laboratory of Marine Environmental Survey Technology and Application of MNR, Guangzhou, 510300, China.
| | - Minxia Zhang
- China National Offshore Oil Corporation Research Institute, Beijing, 100028, China
| | - Chuqian Lu
- South China Sea Ecological Center of Ministry of Natural Resources (MNR), Nansha Islands Coral Reef Ecosystem National Observation and Research Station, & Key Laboratory of Marine Environmental Survey Technology and Application of MNR, Guangzhou, 510300, China.
| | - Xiao Ji
- East China Sea Ecological Center of Ministry of Natural Resources (MNR), Shanghai, 201206, China
| | - Lei Yuan
- South China Sea Ecological Center of Ministry of Natural Resources (MNR), Nansha Islands Coral Reef Ecosystem National Observation and Research Station, & Key Laboratory of Marine Environmental Survey Technology and Application of MNR, Guangzhou, 510300, China
| | - Changshu Chen
- South China Sea Ecological Center of Ministry of Natural Resources (MNR), Nansha Islands Coral Reef Ecosystem National Observation and Research Station, & Key Laboratory of Marine Environmental Survey Technology and Application of MNR, Guangzhou, 510300, China
| | - Zhiqiang Chen
- South China Sea Ecological Center of Ministry of Natural Resources (MNR), Nansha Islands Coral Reef Ecosystem National Observation and Research Station, & Key Laboratory of Marine Environmental Survey Technology and Application of MNR, Guangzhou, 510300, China
| | - Jianping Ye
- South China Sea Ecological Center of Ministry of Natural Resources (MNR), Nansha Islands Coral Reef Ecosystem National Observation and Research Station, & Key Laboratory of Marine Environmental Survey Technology and Application of MNR, Guangzhou, 510300, China
| | - Jiayu Yang
- South China Sea Ecological Center of Ministry of Natural Resources (MNR), Nansha Islands Coral Reef Ecosystem National Observation and Research Station, & Key Laboratory of Marine Environmental Survey Technology and Application of MNR, Guangzhou, 510300, China
| |
Collapse
|
12
|
Piskuła P, Astel A, Pawlik M. Microplastics in seawater and fish acquired from the corresponding fishing zones of the Baltic Sea. MARINE POLLUTION BULLETIN 2025; 211:117485. [PMID: 39718281 DOI: 10.1016/j.marpolbul.2024.117485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Microplastics in seawater and fish from the Baltic Sea were analyzed. The significant contribution of the study is due to extensive collection of fish and surface water samples from corresponding fishing zones. Microplastics were detected in 100 % of seawater and 61 % of fish samples. The abundances of microplastics were 19,984 ± 8858 items/m3 (seawater) and 3.3 items/fish in the fish organs. The average dimension was 1.08 ± 1.19 mm (seawater), and 0.77 ± 0.84 mm (fish). In 106 out of 178 specimens (61 %), MPs were found in the gills (46 %), digestive tract (38 %), or liver (16 %). Fiber was the most dominant shape found in seawater (91.7 %) and fish (68.3 %), while the dominant color of items was blue. Items were mostly composed of polyethylene (21 %), polypropylene (20 %), cellophane (16 %), polyamide (9 %), and polyacrylate (8 %).
Collapse
Affiliation(s)
- Paulina Piskuła
- Institute of Geography, Pomeranian University in Słupsk, 22a Arciszewskiego Str., 76-200 Słupsk, Poland.
| | - Aleksander Astel
- Institute of Geography, Pomeranian University in Słupsk, 22a Arciszewskiego Str., 76-200 Słupsk, Poland
| | - Magdalena Pawlik
- Institute of Geography, Pomeranian University in Słupsk, 22a Arciszewskiego Str., 76-200 Słupsk, Poland
| |
Collapse
|
13
|
Pal D, Prabhakar R, Barua VB, Zekker I, Burlakovs J, Krauklis A, Hogland W, Vincevica-Gaile Z. Microplastics in aquatic systems: A comprehensive review of its distribution, environmental interactions, and health risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:56-88. [PMID: 39668270 PMCID: PMC11717821 DOI: 10.1007/s11356-024-35741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Microplastics (MPs) have become a critical pollutant, accumulating in aquatic ecosystems and posing significant environmental and human health risks. Approximately 5.25 trillion plastic particles float in global oceans, releasing up to 23,600 metric tonnes of dissolved organic carbon annually, which disrupts microbial dynamics. MPs arise from the breakdown of larger plastics, degraded by photodegradation, thermal degradation, and biological processes, which are influenced by polymer type and environmental factors. As carriers, MPs absorb and transport contaminants such as heavy metals, per- and polyfluoroalkyl substances (PFAS), and persistent organic pollutants (POPs) across trophic levels, thereby increasing toxicity within food webs. Key aquatic organisms, including microalgae, molluscs, and fish, experience cellular toxicity, oxidative stress, and disruptions in essential functions due to MP ingestion or adhesion, raising concerns about their bioaccumulation in humans through ingestion, inhalation, and dermal contact. The complex surface chemistry of MPs enhances their pollutant adsorption, a process modulated by environmental pH, salinity, and contamination levels, while aging and structural attributes further impact their bioavailability and toxicity. This review consolidates knowledge on MPs' occurrence, transformation, pollutant interactions, and methodologies for sampling and analysis, emphasizing advancements in spectroscopy and imaging techniques to improve MP detection in aquatic environments. These insights underscore the pressing need for standardized analytical protocols and comprehensive toxicological research to fully understand MPs' effects on ecosystems and human health, informing future mitigation strategies and policy development.
Collapse
Affiliation(s)
- Divya Pal
- Department of Biology and Environmental Science, Linnaeus University, SE-392 31, Kalmar, Sweden.
- Department of Ecology Environment & Plant Sciences (DEEP), Stockholm University, Stockholm, Sweden.
| | - Roshan Prabhakar
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, Stockholm, Sweden
| | - Visva Bharati Barua
- Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC, 28223, USA
| | - Ivar Zekker
- Institute of Chemistry, University of Tartu, 14a Ravila St, Tartu, Estonia
| | | | - Andrejs Krauklis
- Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - William Hogland
- Environmental Engineering and Recovery, Department of Biology and Environmental Science, Faculty of Health and Life Sciences, Linnaeus University, SE-392 31, Kalmar, Sweden
| | - Zane Vincevica-Gaile
- Department of Environmental Science, University of Latvia, Jeglavas Street 1, Riga, LV-1004, Latvia
| |
Collapse
|
14
|
Rodríguez-Torres R, Rist S, Almeda R, Nielsen TG, Pedrotti ML, Hartmann NB. Research trends in nano- and microplastic ingestion in marine planktonic food webs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125136. [PMID: 39424047 DOI: 10.1016/j.envpol.2024.125136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Over the past decade, microplastic research on ingestion and impacts in marine biota has received significant attention. Zooplankton has become a subject of interest due to their crucial role in marine food webs. This review focuses on trends in nano- and microplastics (NMPs) ingestion studies in marine zooplankton. Four groups of organisms were considered: protozoans, holoplankton, meroplankton and ichthyoplankton. Of 120 reviewed articles, holoplankton was the most studied group, with laboratory experiments dominating over field studies. Although NMPs sizes and polymer types are diversifying in laboratory experiments, their characteristics are still far from representing the complexity of NMPs found in nature. Polystyrene (as polymer type) and beads (as shape) are overrepresented in laboratory experiments (54% and 79%, respectively). Furthermore, most NMPs concentrations used in the laboratory exceed those found in the field. The units used to report ingestion of NMPs in zooplankton vary greatly, with "microplastics per individual" being the most frequently used. In addition, certain planktonic groups (e.g., protozoans and ichthyoplankton) and behavioral traits, such as ambush feeding, have been poorly investigated. This variability hampers comparisons between studies and thus mechanistic insights into NMPs ingestion in marine zooplankton. This review identifies research gaps and it highlights the ongoing disparity between environmental and laboratory conditions in zooplankton ingestion studies. We encourage the scientific community to harmonize the reporting units for NMPs ingestion and focus on more environmentally realistic studies with a trait-based approach. Transitioning towards more hypothesis-driven experiments is crucial to clarify the mechanistic importance of environmentally relevant microplastic features.
Collapse
Affiliation(s)
- R Rodríguez-Torres
- National Institute of Aquatic Resource, Technical University of Denmark, Henrik Dams Allé, 2800, Kgs. Lyngby, Denmark; Laboratoire d'Océanographie de Villefranche sur Mer (LOV), UPMC Université Paris 06, CNRS, UMR 7093, Sorbonne Université, 06230 Villefranche sur Mer, France.
| | - S Rist
- National Institute of Aquatic Resource, Technical University of Denmark, Henrik Dams Allé, 2800, Kgs. Lyngby, Denmark
| | - R Almeda
- National Institute of Aquatic Resource, Technical University of Denmark, Henrik Dams Allé, 2800, Kgs. Lyngby, Denmark; EOMAR, IU-ECOAQUA, University of Las Palmas de Gran Canaria, 35017, Tafira Baja, Las Palmas, Spain
| | - T G Nielsen
- National Institute of Aquatic Resource, Technical University of Denmark, Henrik Dams Allé, 2800, Kgs. Lyngby, Denmark
| | - M L Pedrotti
- Laboratoire d'Océanographie de Villefranche sur Mer (LOV), UPMC Université Paris 06, CNRS, UMR 7093, Sorbonne Université, 06230 Villefranche sur Mer, France
| | - N B Hartmann
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
15
|
Liu L, Yin H, Xu Y, Liu B, Ma Y, Feng J, Cao Z, Jung J, Li P, Li ZH. Environmental behavior and toxic effects of micro(nano)plastics and engineered nanoparticles on marine organisms under ocean acidification: A review. ENVIRONMENTAL RESEARCH 2024; 263:120267. [PMID: 39481783 DOI: 10.1016/j.envres.2024.120267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/07/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Ocean acidification (OA) driven by human activities and climate change presents new challenges to marine ecosystems. At the same time, the risks posed by micro(nano)plastics (MNPs) and engineered nanoparticles (ENPs) to marine ecosystems are receiving increasing attention. Although previous studies have uncovered the environmental behavior and the toxic effects of MNPs and ENPs under OA, there is a lack of comprehensive literature reviews in this field. Therefore, this paper reviews how OA affects the environmental behavior of MNPs and ENPs, and summarizes the effects and the potential mechanisms of their co-exposure on marine organisms. The review indicates that OA changes the marine chemical environment, thereby altering the behavior of MNPs and ENPs. These changes affect their bioavailability and lead to co-exposure effects. This impacts marine organisms' energy metabolism, growth and development, antioxidant systems, reproduction and immunity. The potential mechanisms involved the regulation of signaling pathways, abnormalities in energy metabolism, energy allocation, oxidative stress, decreased enzyme activity, and disruptions in immune and reproductive functions. Finally, based on the limitations of existing research, actual environment and hot issues, we have outlined future research needs and identified key priorities and directions for further investigation. This review deepens our understanding of the potential effects of MNPs and ENPs on marine organisms under OA, while also aiming to promote further research and development in related fields.
Collapse
Affiliation(s)
- Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Haiyang Yin
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yanan Xu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yuqing Ma
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Jianxue Feng
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhihan Cao
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
16
|
Kılıç E. Abundance and ecological risk of microplastics in commercial fish species from northeastern Mediterranean Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125252. [PMID: 39510301 DOI: 10.1016/j.envpol.2024.125252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Microplastic pollution in marine environment has attracted the attention of scientists and policy makers. A substantial number of studies have examined the microplastic content in the gastrointestinal tract (GIT) of fish to monitor microplastic (MP) pollution levels in the ambient environment. The aim of the study was to access the microplastic abundance in the commonly consumed fish species and associated ecological risk assessment for consumers. To that end, microplastic presence in the gills and GIT of Boops boops, Mullus barbatus Mullus surmuletus, Saurida undosquamis, Sardina pilchardus, Trachurus mediterraneus, Pagellus erythrinus, Oblada melanurus, Diplous annularis was investigated. The polymer analysis of extracted MPs were done using Fourier transform infrared (FTIR) spectroscopy. Including all examined specimens, mean MP abundance in the GIT and gills were found as 0.8 ± 1.2 MPs/ind and 0.3 ± 0,7 MPs/ind, respectively. Consistent with the global picture, mainly detected MPs were fiber in shape (79%), black (39%) and blue (37%) in color, and less than 500 μm in size (63%). Polyethylene (21%), polyethylene derivatives (33%) and polypropylene (26%) were the most frequently detected polymers. Ecological risk assessment was calculated by employing polymer risk index, and varied between 4,6 and 27 indicating low to medium hazard risk for examined species. Hazard risk score showed that demersal and bentopelagic fish species were more prone to MP toxicity depending on the toxicity levels of identified polymers. Results indicated that polymer distribution in the marine environment is as significant as the habitat preferences of fish in determining the ecological risk posed by microplastic toxicity.
Collapse
Affiliation(s)
- Ece Kılıç
- İskenderun Technical University, Faculty of Marine Science and Technology, Turkey.
| |
Collapse
|
17
|
Zong C, Zhu L, Jabeen K, Li C, Wei N, Wang X, Dong X, Li D. Vertical distribution of microplastics in the Western Pacific Warm Pool: In situ results comparison of different sampling method. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135722. [PMID: 39243537 DOI: 10.1016/j.jhazmat.2024.135722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/18/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Marine microplastics (MPs) are recognized as a growing severe environmental concern. The vertical distribution pattern of MPs in the ocean is still elusive. Meanwhile, different sampling methods have been deployed in previous studies, resulting in difficulties in compiling data. In this study, for the first time, we explored ocean interior MP pollution in the Western Pacific Warm Pool simultaneously using both a CTD (Conductivity-temperature-depth) sampler and a large-volume in-situ filtration system. At the same sampling station, the average abundance of microplastics in the water column obtained by the two sampling methods was 0.37 ± 0.44 n/m3 (in-situ filtration) and 115.12 ± 64.13 n/m3 (CTD), respectively, which showed significant differences. Both methods found that the main chemical composition and shape of MPs were PET and fiber. Ocean current was identified as the dominant factor that impacted the horizontal distribution of MPs in the study area. The abundance of MPs in the surface layer was 5.4-703.8 times higher than that of the water column. The similar physical and chemical properties of MPs in the surface water and water column indicated that MPs in the water column originate from the sustained release from the surface layer.
Collapse
Affiliation(s)
- Changxing Zong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China
| | - Lixin Zhu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China.
| | - Khalida Jabeen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China
| | - Changjun Li
- Ocean School, Yantai University, Yantai 264005, China
| | - Nian Wei
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China
| | - Xinghuo Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China
| | - Xuri Dong
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China
| |
Collapse
|
18
|
Chanda M, Bathi JR, Khan E, Katyal D, Danquah M. Microplastics in ecosystems: Critical review of occurrence, distribution, toxicity, fate, transport, and advances in experimental and computational studies in surface and subsurface water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122492. [PMID: 39307085 DOI: 10.1016/j.jenvman.2024.122492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 11/17/2024]
Abstract
Microplastics (MPs), particles under 5 mm, pervade water, soil, sediment, and air due to increased plastic production and improper disposal, posing global environmental and health risks. Examining their distribution, quantities, fate, and transport is crucial for effective management. Several studies have explored MPs' sources, distribution, transport, and biological impacts, primarily focusing on the marine environment. However, there is a need for a comprehensive review of all environmental systems together for enhanced pollution control. This review critically examines the occurrence, distribution, fate, and transport of MPs in the following environments: freshwater, marine, and terrestrial ecosystems. The concentration of MPs is highly variable in the environment, ranging from negligible to significant amounts (0.003-519.223 items/liter in water and 0-18,000 items/kg dry weight sediment, respectively). Predominantly, these MPs manifest as fibers and fragments, with primary polymer types including polypropylene, polystyrene, polyethylene, and polyethylene terephthalate. A complex interplay of natural and anthropogenic actions, including wastewater treatment plant discharges, precipitation, stormwater runoff, inadequate plastic waste management, and biosolid applications, influences MPs' presence and distribution. Our critical synthesis of existing literature underscores the significance of factors such as wind, water flow rates, settling velocities, wave characteristics, plastic morphology, density, and size in determining MPs' transport dynamics in surface and subsurface waters. Furthermore, this review identifies research gaps, both in experimental and simulation, and outlines pivotal avenues for future exploration in the realm of MPs.
Collapse
Affiliation(s)
- Mithu Chanda
- Civil and Chemical Engineering Department, University of Tennessee at Chattanooga, Chattanooga, TN, 37403, United States
| | - Jejal Reddy Bathi
- Civil and Chemical Engineering Department, University of Tennessee at Chattanooga, Chattanooga, TN, 37403, United States.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV, 89154, United States
| | - Deeksha Katyal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, 110078, New Delhi, India
| | - Michael Danquah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, United States
| |
Collapse
|
19
|
Yang Z, Zhang J, Viyakarn V, Arnupapboon S, Chanyim A, Lorpai A, Hayashi T, Hagita R, Uchida K, Arakawa H. Concentrations and carbonyl index of microplastic in surface seawater in southeastern coastal region off Japan, Northwestern Pacific. MARINE POLLUTION BULLETIN 2024; 208:116957. [PMID: 39260145 DOI: 10.1016/j.marpolbul.2024.116957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
In this study, microplastic concentrations in the southeastern coastal regions of Japan were measured along the northward ocean current at seven stations from Okinawa to Tokai region. Concentrations ranged from 0.014 to 0.094 pieces/m3, except for a station near the Bungo Channel mouth, which had 0.723 pieces/m3. Polystyrene (PS) foam was most prevalent near the east side of Kyushu, suggesting origination from nearby coastal areas. Fragmentation levels were higher in the Tokai region. In addition, carbonyl index (CI) of polyethylene (PE) microplastics increased northward, indicating northward movement from southern regions. Standard PE microplastics showed chemical treatment does not significantly alter CI values. Further spectral analysis suggested potential oxidation of polypropylene (PP) and PS foam by chemical treatment. This study provides a comprehensive understanding of the abundance, distribution, and characteristics of microplastics in the southeastern coastal regions of Japan in the northwest Pacific, enhancing the understanding of environmental fate of microplastics.
Collapse
Affiliation(s)
- Zijiang Yang
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo 108-8477, Japan.
| | - Jiaqi Zhang
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo 108-8477, Japan.
| | - Voranop Viyakarn
- Aquatic Resources Research Institute, Chulalongkorn University, 254 Institute Building 3, Pyathai Road, Patumwan, Bangkok, Thailand.
| | - Sukchai Arnupapboon
- Southeast Asia Fisheries Development Center, Phrasamutchedi, Samut Prakan 10290, Thailand.
| | - Anusorn Chanyim
- Southeast Asia Fisheries Development Center, Phrasamutchedi, Samut Prakan 10290, Thailand.
| | - Anuphap Lorpai
- Southeast Asia Fisheries Development Center, Phrasamutchedi, Samut Prakan 10290, Thailand.
| | - Toshifumi Hayashi
- Center for Marine Research and Operations, Tokyo University of Marine Science and Technology, 5-7, Konan-4, Minato, Tokyo 108-8477, Japan.
| | - Ryuichi Hagita
- Center for Marine Research and Operations, Tokyo University of Marine Science and Technology, 5-7, Konan-4, Minato, Tokyo 108-8477, Japan.
| | - Keiichi Uchida
- Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, 5-7, Konan-4, Minato, Tokyo 108-8477, Japan.
| | - Hisayuki Arakawa
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo 108-8477, Japan.
| |
Collapse
|
20
|
Chen XL, Wu LJ, Miao LL, Li L, Qiu LM, Zhu HQ, Si XR, Li HF, Zhao QL, Qi PZ, Hou TT. Chronic polystyrene microplastics exposure-induced changes in thick-shell mussel (Mytilus coruscus) metaorganism: A holistic perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116961. [PMID: 39208580 DOI: 10.1016/j.ecoenv.2024.116961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Microplastics have emerged as a significant global concern, particularly in marine ecosystems. While extensive research has focused on the toxicological effects of microplastics on marine animals and/or their associated microorganisms as two separate entities, the holistic perspective of the adaptability and fitness of a marine animal metaorganism-comprising the animal host and its microbiome-remains largely unexplored. In this study, mussel metaorganisms subjected chronic PS-MPs exposure experienced acute mortality but rapidly adapted. We investigated the response of innate immunity, digestive enzymes and their associated microbiomes to chronic PS-MPs exposure. We found that PS-MPs directly and indirectly interacted with the host and microbe within the exposure system. The adaptation was a joint effort between the physiological adjustments of mussel host and genetic adaptation of its microbiome. The mussel hosts exhibited increased antioxidant activity, denser gill filaments and increased immune cells, enhancing their innate immunity. Concurrently, the gill microbiome and the digestive gland microbiome respective selectively enriched for plastic-degrading bacteria and particulate organic matter-utilizing bacteria, facilitating the microbiome's adaptation. The microbial adaptation to chronic PS-MPs exposure altered the ecological roles of mussel microbiome, as evidenced by alterations in microbial interactions and nutrient cycling functions. These findings provided new insights into the ecotoxicological impact of microplastics on marine organisms from a metaorganism perspective.
Collapse
Affiliation(s)
- Xing-Lu Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Lin-Jun Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Li Miao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Li
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Long-Mei Qiu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Hui-Qiang Zhu
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Xi-Rui Si
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Hong-Fei Li
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Qiao-Ling Zhao
- Zhoushan Institute for Food and Drug Control, Zhoushan, Zhejiang 316000, China
| | - Peng-Zhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Ting-Ting Hou
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| |
Collapse
|
21
|
Gan M, Zhang Y, Shi P, Cui L, Zhang C, Guo J. Occurrence, potential sources, and ecological risk assessment of microplastics in the inland river basins in Northern China. MARINE POLLUTION BULLETIN 2024; 205:116656. [PMID: 38950516 DOI: 10.1016/j.marpolbul.2024.116656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Microplastics (MPs) are the pollutants, found widely across various environmental media. However, studies on the MP pollution in urban rivers and the necessary risk assessments remain limited. In this study, the abundance and characteristics of microplastics in a typical urban river were examined to evaluate their distribution, sources, and ecological risks. It was observed that the abundance of MPs in sediments (220-2840 items·kg-1 dry weight (DW)) was much higher than that in surface water (2.9-10.3 items·L-1), indicating that the sediment is the "sink" of river MPs. Surface water and sediment were dominated by small particle size MPs (< 0.5 mm). Fiber and debris were common shapes of MPs in rivers and sediments. The microplastics in river water and sediments were primarily white and transparent, respectively. Polypropylene (PP) and polyethylene (PE) were the major polymers found.
Collapse
Affiliation(s)
- Mufan Gan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Yan Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Peng Shi
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Lingzhou Cui
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Chengqian Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| |
Collapse
|
22
|
Sun C, Teng J, Wang D, Li J, Wang X, Zhao J, Shan E, Chen H, Wang Q. Potential threats of microplastics and pathogenic bacteria to the immune system of the mussels Mytilus galloprovincialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106959. [PMID: 38768528 DOI: 10.1016/j.aquatox.2024.106959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/25/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
As one of the main components of marine pollution, microplastics (MPs) inevitably enter the mussel aquaculture environment. At the same time, pathogenic bacteria, especially pathogens such as Vibrio, can cause illness outbreaks, leading to large-scale death of mussels. The potential harm of MPs and pathogenic bacteria to bivalve remains unclear. This study designed two experiments (1) mussels (Mytilus galloprovincialis) were exposed to 100 particles/L or 1,000 particles/L polymethyl methacrylate (PMMA, 17.01 ± 6.74 μm) MPs and 1 × 107 CFU/mL Vibrio parahaemolyticus at the same time (14 days), and (2) mussels were exposed to 100 particles/L or 1,000 particles/L MPs for a long time (30 days) and then exposed to 1 × 107 CFU/mL V. parahaemolyticus to explore the effects of these two stresses on the mussel immune system. The results showed that after the combined exposure of V. parahaemolyticus and MPs, the lysosomal membrane stability of hemocytes decreased, lysozyme activity was inhibited, and hemocytes were induced to produce more lectins and defensins to fight pathogenic invasion. Long-term exposure to MPs caused a large amount of energy consumption in mussels, inhibited most of the functions of humoral immunity, increased the risk of mussel infection with pathogenic bacteria, and negatively affected mussel condition factor, the number of hemocytes, and the number of byssuses. Mussels may allocate more energy to deal with MPs and pathogenic bacterial infections rather than for growth. Above all, MPs exposure can affect mussel immune function or reduce its stress resistance, which in turn has an impact on mollusk farming.
Collapse
Affiliation(s)
- Chaofan Sun
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jia Teng
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Dongyu Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jiashen Li
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaodan Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Encui Shan
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hao Chen
- College of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|
23
|
Choudhury TR, Riad S, Uddin FJ, Maksud MA, Alam MA, Chowdhury AMS, Mubin AN, Islam ARMT, Malafaia G. Microplastics in multi-environmental compartments: Research advances, media, and global management scenarios. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104379. [PMID: 38851130 DOI: 10.1016/j.jconhyd.2024.104379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/06/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
During the past decades, microplastics (MPs) have become an emerging concern due to their persistence and potential environmental threat. MP pollution has become so drastic that it has been found in the human food chain, breast milk, polar regions, and even the Himalayan basin, lake, etc. Inflammation, pulmonary hypertension, vascular occlusions, increased coagulability and blood cell cytotoxicity, disruption of immune function, neurotoxicity, and neurodegenerative diseases can all be brought on by severe microplastic exposure. Although many MPs studies have been performed on single environmental compartments, MPs in multi-environmental compartments have yet to be explored fully. This review aims to summarize the muti-environmental media, detection tools, and global management scenarios of MPs. The study revealed that MPs could significantly alter C flow through the soil-plant system, the structure and metabolic status of the microbial community, soil pH value, biomass of plant shoots and roots, chlorophyll, leaf C and N contents, and root N contents. This review reveals that MPs may negatively affect many C-dependent soil functions. Different methods have been developed to detect the MPs from these various environmental sources, including microscopic observation, density separation, Raman, and FT-IR analysis. Several articles have focused on MPs in individual environmental sources with a developed evaluation technique. This review revealed the extensive impacts of MPs on soil-plant systems, microbial communities, and soil functions, especially on water, suggesting possible disturbances to vital ecological processes. Furthermore, the broad range of detection methods explored emphasizes the significance of reliable analytical techniques in precisely evaluating levels of MP contamination in various environmental media. This paper critically discusses MPs' sources, occurrences, and global management scenarios in all possible environmental media and ecological health impacts. Future research opportunities and required sustainable strategies have also been suggested from Bangladesh and international perspectives based on challenges faced due to MP's pollution.
Collapse
Affiliation(s)
- Tasrina Rabia Choudhury
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Center Dhaka, Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh.
| | - Syed Riad
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, Bangladesh
| | - Foyez Jalal Uddin
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, Bangladesh
| | - M A Maksud
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Center Dhaka, Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh
| | - M Abbas Alam
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, Bangladesh; Bangladesh Accreditation Board, Dhaka 1000, Bangladesh
| | | | - Al-Nure Mubin
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
24
|
Cecchi T, Poletto D, Berbecaru AC, Cârstea EM, Râpă M. Assessing Microplastics and Nanoparticles in the Surface Seawater of Venice Lagoon-Part I: Methodology of Research. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1759. [PMID: 38673116 PMCID: PMC11051501 DOI: 10.3390/ma17081759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Microplastics (MPs) and nanoplastics (NPs) both represent significant concerns in environmental sciences. This paper aims to develop a convenient and efficient methodology for the detection and measurement of MPs and nanoparticles from surface seawater and to apply it to the water samples collected from the UNESCO site of Venice and its lagoon, more precisely in the Venice-Lido Port Inlet, Grand Canal under Rialto Bridge, and Saint Marc basin. In this study, MPs were analyzed through optical microscopy for their relative abundance and characterized based on their color, shape, and size classes, while the concentration and the mean of nanoparticles were estimated via the Nanoparticle Tracking Analysis technique. Bulk seawater sampling, combined with filtration through a cascade of stainless-steel sieves and subsequent digestion, facilitates the detection of MPs of relatively small sizes (size classes distribution: >1 mm, 1000-250 μm, 250-125 μm, 125-90 μm, and 90-32 μm), similar to the size of MPs ingested by marine invertebrates and fishes. A protocol for minimizing interference from non-plastic nanoparticles through evaporation, digestion, and filtration processes was proposed to enrich the sample for NPs. The findings contribute to the understanding of the extent and characteristics of MPs and nanoparticle pollution in the Venice Lagoon seawater, highlighting the potential environmental risks associated with these pollutants and the need for coordinated approaches to mitigate them. This article is based on scientific research carried out within the framework of the H2020 In-No-Plastic-Innovative approaches towards prevention, removal and reuse of marine plastic litter project (G.A. ID no. 101000612).
Collapse
Affiliation(s)
- Teresa Cecchi
- Chemistry Department, Istituto Technico Technologico, Via Montani 7, 63900 Fermo, Italy;
| | - Davide Poletto
- Venice Lagoon Plastic Free, Castello 2641, 30122 Venice, Italy
| | - Andrei Constantin Berbecaru
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| | - Elfrida Mihaela Cârstea
- National Institute of R&D for Optoelectronics INOE 2000, Atomistilor 409, 077125 Magurele, Romania;
| | - Maria Râpă
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| |
Collapse
|
25
|
Nakano H, Alfonso MB, Jandang S, Phinchan N, Chavanich S, Viyakarn V, Isobe A. Influence of monsoon seasonality and tidal cycle on microplastics presence and distribution in the Upper Gulf of Thailand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170787. [PMID: 38354800 DOI: 10.1016/j.scitotenv.2024.170787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Southeast Asian countries are recognized as significant contributors to the discharge of abundant plastic waste into the ocean. In this study, we conducted neuston net surveys on Si Chang Island of the Gulf of Thailand, a coral reef conservation area, to determine the presence of microplastic (MP) pollution. The survey, conducted during the wet (southwesterly monsoon), transition, and dry seasons (northeasterly monsoon), revealed that the MP abundance was in the range of 0.02-42.46 particles m-3. The precipitation, wind, and current direction induced by monsoons influenced the abundance and distribution of MP, presenting a significant seasonality. The cluster analysis for colors and polymer types of MPs suggested that the origin of plastic particles is diverse. Based on our results, a proposal for the generation, sources, and pathways for MPs in the Gulf of Thailand is presented: 1) plastic wastes exposed to strong UV light during the dry season get fragmented around the river, and 2) heavy rains wash away the particles during the wet season. This proposal is applicable to tropical regions, including the Gulf of Thailand. Therefore, this paper concluded that ocean currents induced by monsoons and the unique climate, resulting in the generation of MPs on land, increase MP presence and distribution in the ocean surrounding Southeast Asia countries. Furthermore, coral reef ecosystems can be particularly threatened by MPs in these areas. So, an increase in MP monitoring on coral ecosystems from Thailand and the world is highly recommended.
Collapse
Affiliation(s)
- Haruka Nakano
- Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580, Japan; Center for Ocean Plastic Studies, Kyushu University, CU Research Building, Bangkok 10330, Thailand.
| | - María Belén Alfonso
- Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580, Japan; Center for Ocean Plastic Studies, Kyushu University, CU Research Building, Bangkok 10330, Thailand
| | - Suppakarn Jandang
- Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580, Japan; Center for Ocean Plastic Studies, Kyushu University, CU Research Building, Bangkok 10330, Thailand
| | - Nopphawit Phinchan
- Center for Ocean Plastic Studies, Kyushu University, CU Research Building, Bangkok 10330, Thailand
| | - Suchana Chavanich
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Aquatic Resources Research Institute, Chulalongkorn University, 254, Institute Building No. 3, 9th floor, Wang Mai Sub District Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - Voranop Viyakarn
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Aquatic Resources Research Institute, Chulalongkorn University, 254, Institute Building No. 3, 9th floor, Wang Mai Sub District Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - Atsuhiko Isobe
- Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580, Japan; Center for Ocean Plastic Studies, Kyushu University, CU Research Building, Bangkok 10330, Thailand
| |
Collapse
|
26
|
Queiroz LG, Prado CCA, Melo EC, Moraes BR, de Oliveira PFM, Ando RA, Paiva TCB, Pompêo M, Rani-Borges B. Biofragmentation of Polystyrene Microplastics: A Silent Process Performed by Chironomus sancticaroli Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4510-4521. [PMID: 38426442 DOI: 10.1021/acs.est.3c08193] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Polystyrene (PS) is one of the main synthetic polymers produced around the world, and it is present in the composition of a wide variety of single-use objects. When released into the environment, these materials are degraded by environmental factors, resulting in microplastics. We investigated the ability of Chironomus sancticaroli (Diptera, Chironomidae) to promote the fragmentation of PS microspheres (24.5 ± 2.9 μm) and the toxic effects associated with exposure to this polymer. C. sancticaroli larvae were exposed to 3 different concentrations of PS (67.5, 135, and 270 particles g-1 of dry sediment) for 144 h. Significant lethality was observed only at the highest concentration. A significant reduction in PS particle size as well as evidence of deterioration on the surface of the spheres, such as grooves and cracks, was observed. In addition, changes in oxidative stress biomarkers (SOD, CAT, MDA, and GST) were also observed. This is the first study to report the ability of Chironomus sp. to promote the biofragmentation of microplastics. The information obtained demonstrates that the macroinvertebrate community can play a key role in the degradation of plastic particles present in the sediment of freshwater environments and can also be threatened by such particle pollution.
Collapse
Affiliation(s)
- Lucas G Queiroz
- Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, 05508-090 São Paulo, Brazil
| | - Caio C A Prado
- School of Engineering of Lorena, Department of Biotechnology, University of São Paulo, Estrada do Campinho s/n, Lorena, 12602-810 São Paulo, Brazil
| | - Eduardo C Melo
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, Av Prof. Lineu Prestes 748, São Paulo, 05508-900 São Paulo, Brazil
| | - Beatriz R Moraes
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, Av Prof. Lineu Prestes 748, São Paulo, 05508-900 São Paulo, Brazil
| | - Paulo F M de Oliveira
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, Av Prof. Lineu Prestes 748, São Paulo, 05508-900 São Paulo, Brazil
| | - Rômulo A Ando
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, Av Prof. Lineu Prestes 748, São Paulo, 05508-900 São Paulo, Brazil
| | - Teresa C B Paiva
- School of Engineering of Lorena, Department of Basic and Environmental Sciences, University of São Paulo, Estrada do Campinho s/n, Lorena, 12602-810 São Paulo, Brazil
| | - Marcelo Pompêo
- Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, 05508-090 São Paulo, Brazil
| | - Bárbara Rani-Borges
- Institute of Science and Technology, São Paulo State University, Av Três de Março 511, Sorocaba, 18087-180 São Paulo, Brazil
| |
Collapse
|
27
|
Jeong J, Im J, Choi J. Integrating aggregate exposure pathway and adverse outcome pathway for micro/nanoplastics: A review on exposure, toxicokinetics, and toxicity studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116022. [PMID: 38309230 DOI: 10.1016/j.ecoenv.2024.116022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Micro/nanoplastics (MNPs) have emerged as a significant environmental concern due to their widespread distribution and potential adverse effects on human health and the environment. In this study, to integrate exposure and toxicity pathways of MNPs, a comprehensive review of the occurrence, toxicokinetics (absorption, distribution, and excretion [ADE]), and toxicity of MNPs were investigated using the aggregate exposure pathway (AEP) and adverse outcome pathway (AOP) frameworks. Eighty-five papers were selected: 34 papers were on detecting MNPs in environmental samples, 38 papers were on the ADE of MNPs in humans and fish, and 36 papers were related to MNPs toxicity using experimental models. This review not only summarizes individual studies but also presents a preliminary AEP-AOP framework. This framework offers a comprehensive overview of pathways, enabling a clearer visualization of intricate processes spanning from environmental media, absorption, distribution, and molecular effects to adverse outcomes. Overall, this review emphasizes the importance of integrating exposure and toxicity pathways of MNPs by utilizing AEP-AOP to comprehensively understand their impacts on human and ecological organisms. The findings contribute to highlighting the need for further research to fill the existing knowledge gaps in this field and the development of more effective strategies for the safe management of MNPs.
Collapse
Affiliation(s)
- Jaeseong Jeong
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Jeongeun Im
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| |
Collapse
|
28
|
Massardo S, Verzola D, Alberti S, Caboni C, Santostefano M, Eugenio Verrina E, Angeletti A, Lugani F, Ghiggeri GM, Bruschi M, Candiano G, Rumeo N, Gentile M, Cravedi P, La Maestra S, Zaza G, Stallone G, Esposito P, Viazzi F, Mancianti N, La Porta E, Artini C. MicroRaman spectroscopy detects the presence of microplastics in human urine and kidney tissue. ENVIRONMENT INTERNATIONAL 2024; 184:108444. [PMID: 38281449 DOI: 10.1016/j.envint.2024.108444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/30/2024]
Abstract
There is a growing concern within the medical community about the potential burden of microplastics on human organs and tissues. In this study, we investigated by microRaman spectroscopy the presence of microplastics in human kidneys and urine. Moreover, an open-access software was developed and validated for the project, which enabled the comparison between the investigated spectra and a self-created spectral database, thus enhancing the ability to characterize polymers and pigments in biological matrices. Healthy portions of ten kidneys obtained from nephrectomies, as well as ten urine samples from healthy donors were analyzed: 26 particles in both kidney and urine samples were identified, with sizes ranging from 3 to 13 μm in urine and from 1 to 29 μm in kidneys. The most frequently determined polymers are polyethylene and polystyrene, while the most common pigments are hematite and Cu-phthalocyanine. This preclinical study proves the presence of microplastics in renal tissues and confirms their presence in urine, providing the first evidence of kidney microplastics deposition in humans.
Collapse
Affiliation(s)
- Sara Massardo
- DCCI, Department of Chemistry and Industrial Chemistry, University of Genoa, Italy
| | - Daniela Verzola
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Stefano Alberti
- DCCI, Department of Chemistry and Industrial Chemistry, University of Genoa, Italy
| | - Claudia Caboni
- DCCI, Department of Chemistry and Industrial Chemistry, University of Genoa, Italy
| | | | - Enrico Eugenio Verrina
- UOC Nephrology IRCCS Istituto Giannina Gaslini, Genoa, Italy; UOSD Dialysis IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Angeletti
- UOC Nephrology IRCCS Istituto Giannina Gaslini, Genoa, Italy; Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Lugani
- UOC Nephrology IRCCS Istituto Giannina Gaslini, Genoa, Italy; Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gian Marco Ghiggeri
- UOC Nephrology IRCCS Istituto Giannina Gaslini, Genoa, Italy; Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Noemi Rumeo
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Micaela Gentile
- Division of Nephrology, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA; UO Nefrologia, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Paolo Cravedi
- Division of Nephrology, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Gianluigi Zaza
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University/Hospital of Foggia, Foggia, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University/Hospital of Foggia, Foggia, Italy
| | - Pasquale Esposito
- Department of Internal Medicine, University of Genoa, Genoa, Italy; Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesca Viazzi
- Department of Internal Medicine, University of Genoa, Genoa, Italy; Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Nicoletta Mancianti
- Department of Emergency-Urgency and Transplantation, Nephrology, Dialysis and Transplantation Unit, University Hospital of Siena, Siena, Italy
| | - Edoardo La Porta
- UOC Nephrology IRCCS Istituto Giannina Gaslini, Genoa, Italy; UOSD Dialysis IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - Cristina Artini
- DCCI, Department of Chemistry and Industrial Chemistry, University of Genoa, Italy; Institute of Condensed Matter Chemistry and Technologies for Energy, National Research Council, CNR-ICMATE, Genoa, Italy
| |
Collapse
|
29
|
Liu Y, Lüttjohann S, Vianello A, Lorenz C, Liu F, Vollertsen J. Detecting small microplastics down to 1.3 μm using large area ATR-FTIR. MARINE POLLUTION BULLETIN 2024; 198:115795. [PMID: 38006870 DOI: 10.1016/j.marpolbul.2023.115795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/18/2023] [Accepted: 11/12/2023] [Indexed: 11/27/2023]
Abstract
Large area attenuated total reflectance-Fourier transform infrared spectroscopy (LAATR-FTIR) is introduced as a novel technique for detecting small microplastics (MPs) down to 1.3 μm. Two different LAATR units, one with a zinc selenide (ZnSe) and one with a germanium (Ge) crystal, were used to detect reference MPs < 20 μm, and MPs in marine water samples, and compared with μ-FTIR in transmission mode. The LAATR units performed well in identifying small MPs down to 1.3 μm. However, they were poorly suited for large MPs as uneven particle thickness resulted in uneven contact between crystal and particle, misinterpreting large MPs as many small MPs. However, for more homogeneous matrices, the technique was promising. Further assessment indicated that there was little difference in spectra quality between transmission mode and LAATR mode. All in all, while LAATR units struggle to substitute transmission mode, it provides additional information and valuable information on small MPs.
Collapse
Affiliation(s)
- Yuanli Liu
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg, Denmark; College of Environmental and Biological Engineering, Putian University, Putian 351100, China; Fujian Provincial Key Laboratory of Ecology-Toxicological Effects and Control for Emerging Contaminants, Putian University, Putian 351100, China; Key Laboratory of Ecological Environment and Information Atlas, Fujian Provincial University, Putian 351100, Fujian, China.
| | - Stephan Lüttjohann
- Bruker Optics GmbH & Co. KG, Rudolf-Plank-Straße 27, 76275 Ettlingen, Germany
| | - Alvise Vianello
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg, Denmark
| | - Claudia Lorenz
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg, Denmark
| | - Fan Liu
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg, Denmark
| | - Jes Vollertsen
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg, Denmark
| |
Collapse
|
30
|
Siddique MAM, Shazada NE, Ritu JA, Turjo KEZ, Das K. Does the mouth size influence microplastic ingestion in fishes? MARINE POLLUTION BULLETIN 2024; 198:115861. [PMID: 38035541 DOI: 10.1016/j.marpolbul.2023.115861] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
This study investigated microplastic (MP) contamination in six tropical fish species of different mouth sizes and trophic levels from Saint Martin's Island, Bay of Bengal. A total of 309 microplastics (MPs) were extracted from the gastrointestinal tract (GT) of these selected fishes, where the presence of MPs was 100 %. The mean abundance of MPs was significantly varied among the species and ranged from 4.38 to 10 MPs/GT (p < 0.05). This study revealed that MP incidence was strongly correlated with the mouth-to-body ratio of the selected fishes (r = 0.424, p = 0.003) and trophic levels (r = 0.458, p = 0.002). Results suggest that fish with larger mouths are more likely to ingest MPs, intentionally or unintentionally, compared to those with smaller mouths.
Collapse
Affiliation(s)
- Mohammad Abdul Momin Siddique
- University of Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian South Research Center of Aquaculture and Biodiversity of Hydrogenases, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czech Republic; Department of Oceanography, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| | - Nururshopa Eskander Shazada
- University of Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian South Research Center of Aquaculture and Biodiversity of Hydrogenases, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Johora Akter Ritu
- Department of Oceanography, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | | | - Koushik Das
- University of Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian South Research Center of Aquaculture and Biodiversity of Hydrogenases, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| |
Collapse
|
31
|
Lu H, Ou Y, Zhao M, Ni Z. Microplastic enrichment capacity of Ctenochaetus striatus from the habitat environment - An example in Xisha, South China Sea. MARINE POLLUTION BULLETIN 2023; 197:115756. [PMID: 37976586 DOI: 10.1016/j.marpolbul.2023.115756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Microplastic pollution is a widespread concern in the global marine environment. In this study, microplastic pollution status in Xisha waters was investigated. Microplastics were found in all seawater samples, and 90.76 % of C. striatus samples were detected with microplastics. The average abundance of microplastics in seawater samples was 0.64 ± 0.39 items/L, and the abundance of microplastics in the gills and gastrointestinal tracts (GITs)of C. striatus was 1.14 ± 0.41 items/L and 1.80 ± 0.49 items/L, respectively. Shapes of microplastics in the seawater and in the gills and GITs of C. striatus were mainly fibers and films, and the majority of the particle sizes being <1 mm, and the polymers were mainly PET. In addition, the abundance of microplastics in the gills and GITs of C. striatus was positively correlated with that in the seawater, and the correlation was higher in the gills than in the GITs, which means that the accumulation of microplastics in the gills was more closely related to their habitats. The positive correlation between microplastic abundance in the gills and GITs of C. striatus and its body size may be due to the fact that larger individuals have greater energetic demands, require more energy requirements, consume more food, and thus increase the chances of ingesting microplastics.
Collapse
Affiliation(s)
- Huajie Lu
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Marine Ecological Monitoring and Restoration Technologies, MNRs, Shanghai 201306, China; National Distant-water Fisheries Engineering Research Center, Shanghai Ocean University, Shanghai 201306, China.
| | - Yuzhe Ou
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Maolin Zhao
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Zhenyu Ni
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
32
|
Siddique MAM, Tahsin T, Hossain I, Hossain MS, Shazada NE. Microplastic contamination in commercial fish feeds: A major concern for sustainable aquaculture from a developing country. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115659. [PMID: 37944467 DOI: 10.1016/j.ecoenv.2023.115659] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Plastic pollution has become a global issue nowadays. Due to the increased population in developing countries, we largely depend on fish from our aquaculture industry to meet the required protein demand. Though several studies documented plastic ingestion in freshwater and marine organisms, very limited studies have been conducted to elucidate microplastic (MP) contamination in commercial fish feed. Therefore, this study was designed to identify, quantify, and characterize microplastics (MPs) in commercial fish feeds in Bangladesh and assess possible health risks in fish consuming different commercial fish feeds. All fish feed samples were 100 % contaminated with MPs, where the mean abundance of MPs ranged between 500 and 2200 MPs/kg. No significant differences among different types of feeds (e.g., starter, grower, and finisher) were observed in terms of MPs abundance (F = 0.999, p = 0.385). This study revealed that fiber was the most dominant shape of MPs (90 %), while the most dominant color of MPs was red (34 %), followed by black (31 %) and blue (19 %). The 100-1500 µm size class covers 88 % of the total MPs in the collected fish feed samples. Identified polymers in the samples were polyethylene (PE, 37.71 %), polyvinyl chloride (PVC, 27.14 %), polypropylene (PP, 22.08 %), and polyethylene terephthalate (PET, 13.07 %), respectively, where PE and PVC fall under the risk category IV to V. The Pollution load index (PLI) values of all fish feed samples were <10, indicating the risk category of I (low risk). Therefore, this study highly recommended avoiding plastic materials in the packaging and storing purposes of feed ingredients in the feed mills to ensure contamination-free fish feed for sustainable aquaculture.
Collapse
Affiliation(s)
- Mohammad Abdul Momin Siddique
- Department of Oceanography, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrogenases, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, Vodnany 389 25, Czech Republic.
| | - Tasnia Tahsin
- Department of Oceanography, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Imtiaz Hossain
- Department of Oceanography, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Shahadat Hossain
- Department of Oceanography, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Nururshopa Eskander Shazada
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Nokhali, 3814, Bangladesh; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrogenases, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, Vodnany 389 25, Czech Republic
| |
Collapse
|
33
|
Liu R, Wang T, Li J, Liu X, Zhu Q. Simulation of seasonal transport of microplastics and influencing factors in the China Seas based on the ROMS model. WATER RESEARCH 2023; 244:120493. [PMID: 37683497 DOI: 10.1016/j.watres.2023.120493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023]
Abstract
Elucidating the mechanisms governing microplastic transport and spatial distribution in offshore waters is essential to microplastic control. However, current research on microplastic transport in the China Seas is largely restricted to small-scale investigations, which do not provide a comprehensive result. Therefore, in this study, we used the Regional Ocean Modeling System (ROMS) combined with the Lagrangian Transport (LTRANS v.2) model to investigate how microplastics are transported around the China Seas during different seasons and under climatological river discharge. Our findings showed that the microplastic pathways and spatial distributions exhibit marked seasonal variations controlled by circulation patterns in the China Seas, river discharge values, and the characteristics of the microplastic materials. Floating microplastics exhibited the longest transport distance in summer, when microplastics from the Pearl River could be transported up to 1375.8 km through the Tokara and Tsushima straits. The heavy pollution areas in summer were located in the South Yellow Sea and East China Sea, mainly resulting from the contribution of the Yangtze River (>66%). In autumn and winter, more than three-quarters of the microplastics beached off the south-central Chinese coast. In addition, simulating the vertical velocity of the water prolonged the time required for microplastics to reach the open ocean, thereby reducing the amount of microplastics entering the Pacific Ocean by 6% compared to the simulation without the vertical velocity of the water in summer. Microplastics with higher densities were generally transported shorter distances. The transmission distances of PET and PS were two orders of magnitude smaller than that of PE. This study enhances knowledge of the sources and fates of offshore microplastics and provides scientific support for offshore microplastic control.
Collapse
Affiliation(s)
- Rongze Liu
- College of Oceanography, Hohai University, Nanjing 210098, China
| | - Teng Wang
- College of Oceanography, Hohai University, Nanjing 210098, China.
| | - Junde Li
- College of Oceanography, Hohai University, Nanjing 210098, China
| | - Xiaohui Liu
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Qing Zhu
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
34
|
Zhang L, You H, Chen J, Huang B, Cui Y, Hossain KB, Chen Q, Cai M, Qian Q. Surface structures changes and biofilm communities development of degradable plastics during aging in coastal seawater. MARINE POLLUTION BULLETIN 2023; 193:114996. [PMID: 37301614 DOI: 10.1016/j.marpolbul.2023.114996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 06/12/2023]
Abstract
Biodegradable plastics (BPs) are a suitable alternative to conventional plastics. Still, their excessive or unplanned use may disrupt the abundance and community structure of the microbial population. To this end, a 58-day experiment in which biodegradable plastic objects, such as bags and boxes, were exposed to near-coastal seawater was conducted. They also assessed how they affected the diversity and organization of bacterial populations in seawater and on the surface of BPs products. It is evident that after the exposure time, both BP's bag and box products deteriorate in the ocean to varying degrees. The results of high-throughput sequencing of bacterial communities in seawater and those colonized on BPs products reveal significant differences in microbial community structures between seawater and BPs plastic samples. These suggest that the degradation of biodegradable plastics is shadowed by microorganisms and exposure time, while BP products influence the structural characteristics of microbial communities.
Collapse
Affiliation(s)
- Lin Zhang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Huimin You
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China; College of Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jianfei Chen
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Baoquan Huang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Yaozong Cui
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Kazi Belayet Hossain
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China; College of Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Qinghua Chen
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Minggang Cai
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China.
| | - Qingrong Qian
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
35
|
Kim B, Kim H, Yoo K. Insight into the marine microplastic abundance and distribution in ship cooling systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117940. [PMID: 37075634 DOI: 10.1016/j.jenvman.2023.117940] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Microplastics (MPs) are becoming widely recognized as one of many global environmental issues. Although recently, it has been suggested that marine plastics may affect a ship's operation, the presence of MPs in a ship's cooling system has not received significant attention. In this study, samples of 40 L each were taken from each of the five main pipes (sea chest (SC), ejector pump (EP), main engine jacket freshwater pump (MJFP), main engine jacket freshwater cooler (MJFC), and expansion tank (ET)) in each season (February, May, July, October 2021) to identify and characterize MPs in the five main pipes of the ship cooling system from the training ship Hanbada, Korea Maritime and Ocean University. As a result of FTIR analysis, the total MP abundance was 24,100 particles/m3 in the cooling system of the ship. MP concentrations were observed to be higher (p < 0.05) in winter and spring (dry season: 1578 ± 604 particles/m3) than in summer and autumn (wet season: 990 ± 390 particles/m3). In addition, the MP concentration in the seawater cooling system (SCS) (1509 ± 553 particle/m3) was slightly higher (p > 0.05) than that in the freshwater cooling system (FCS) (1093 ± 546 particles/m3). Compared to previous studies, it was confirmed that the quantitative amount of MPs on board was similar to or slightly less than the concentration of MPs investigated along the coast of Korea (1736 particles/m3). To identify the chemical composition of MPs, an optical microscope and FTIR analysis was carried out, and PE (polyethylene), PP (polypropylene), and PET (polyethylene terephthalate) were identified as major chemicals in all samples. MPs in the form of fibers and fragments accounted for approximately 95% of the total. This study provided evidence of MP contamination in the main pipe in the cooling system of the ship. These findings confirm that marine MPs existing in seawater may have flowed into the ship's cooling system, and it is necessary to understand the effect of marine MPs on the ship's engine and cooling system through continuous monitoring.
Collapse
Affiliation(s)
- Boram Kim
- Maritime Industry Research Division, Logistics and Maritime Industry Research Department, Korea Maritime Institute, Busan, 49111, South Korea
| | - Hyunsu Kim
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea
| | - Keunje Yoo
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea.
| |
Collapse
|
36
|
Wang B, Chen X, Xiong X, Wu W, He Q, Hu H, Wu C. Spatial analysis of the influence on "microplastic communities" in the water at a medium scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163788. [PMID: 37149188 DOI: 10.1016/j.scitotenv.2023.163788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
The issue of microplastics in freshwater has been growing in concern. Besides their abundance, the characteristics of microplastics are also important issues. The concept of "microplastic communities" has been utilized to assess differences in microplastic characteristics. In this study, we utilized the "microplastic community" approach to evaluate the impact of land use on microplastic characteristics in water at a provincial scale in China. The abundance of microplastics in water bodies in Hubei Province varied between 0.33 items/L and 5.40 items/L, with an average of 1.74 items/L. Microplastics were significantly more abundant in rivers than in lakes and reservoirs, and their abundance was negatively correlated with the distance from the nearest residential district of sampling sites. Similarities of microplastic communities were significantly different in mountainous and plain areas. Anthropogenic surfaces increased microplastic abundance and tended to decrease the size of microplastics, whereas natural vegetation had the opposite effect. The effect of land use on microplastic community similarity was greater than that of geographic distance. However, spatial scale limits the effect of various factors on microplastic community similarity. This study revealed the comprehensive influence of land use on microplastic characteristics in water and emphasized the importance of spatial scale in the study of microplastic characteristics.
Collapse
Affiliation(s)
- Biao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofei Chen
- Hubei Academy of Environmental Sciences, Wuhan 430072, China
| | - Xiong Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Weiju Wu
- Hubei Academy of Environmental Sciences, Wuhan 430072, China
| | - Qiankun He
- Hubei Academy of Environmental Sciences, Wuhan 430072, China
| | - Hongjuan Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
37
|
Zheng X, Sun R, Dai Z, He L, Li C. Distribution and risk assessment of microplastics in typical ecosystems in the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163678. [PMID: 37100141 DOI: 10.1016/j.scitotenv.2023.163678] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/04/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023]
Abstract
Microplastic pollution in the marine environment has attracted worldwide attention. The South China Sea is considered a hotspot for microplastic pollution due to the developed industries and high population density around the South China Sea. The accumulation of microplastics in ecosystems can adversely affect the health of the environment and organisms. This paper reviews the recent microplastic studies conducted in the South China Sea, which novelty summarizes the abundance, types, and potential hazards of microplastics in coral reef ecosystems, mangrove ecosystems, seagrass bed ecosystems, and macroalgal ecosystems. A summary of the microplastic pollution status of four ecosystems and a risk assessment provides a more comprehensive understanding of the impact of microplastic pollution on marine ecosystems in the South China Sea. Microplastic abundances of up to 45,200 items/m3 were reported in coral reef surface waters, 5738.3 items/kg in mangrove sediments, and 927.3 items/kg in seagrass bed sediments. There are few studies of microplastics in the South China Sea macroalgae ecosystems. However, studies from other areas indicate that macroalgae can accumulate microplastics and are more likely to enter the food chain or be consumed by humans. Finally, this paper compared the current risk levels of microplastics in the coral reef, mangrove, and seagrass bed ecosystems based on available studies. Pollution load index (PLI) ranges from 3 to 31 in mangrove ecosystems, 5.7 to 11.9 in seagrass bed ecosystems, and 6.1 to 10.2 in coral reef ecosystems, respectively. The PLI index varies considerably between mangroves depending on the intensity of anthropogenic activity around the mangrove. Further studies on seagrass beds and macroalgal ecosystems are required to extend our understanding of microplastic pollution in marine environments. Recent microplastic detection in fish muscle tissue in mangroves requires more research to further the biological impact of microplastic ingestion and the potential food safety risks.
Collapse
Affiliation(s)
- Xuanjing Zheng
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ruikun Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhenqing Dai
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China.
| | - Lei He
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chengyong Li
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
38
|
Thushari GGN, Miyazono K, Sato T, Yamashita R, Takasuka A, Watai M, Yasuda T, Kuroda H, Takahashi K. Floating plastic accumulation and distribution around Kuroshio Current, western North Pacific. MARINE POLLUTION BULLETIN 2023; 188:114604. [PMID: 36706546 DOI: 10.1016/j.marpolbul.2023.114604] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 06/18/2023]
Abstract
The distribution of floating plastic debris around the Kuroshio Current which transports plastics from the coastal waters of Asian countries to North Pacific subtropical gyre, was investigated in 2014. The mean abundance and weight of plastic debris on the sea surface were 100,376 counts/km2 and 446.16 g/km2, respectively. Intensive plastic accumulation was observed in the frontal area between the northern edge of the Kuroshio and coastal waters off Shikoku, while a relatively higher abundance in the south of Kuroshio was generally associated with anticyclonic mesoscale eddies. Such an accumulation resulted from the eddy-Kuroshio interactions which are specifically associated with the offshore non-large meandering Kuroshio path. Overall, white, fragmented, small-sized (≤1 mm) particles with polyethylene and polypropylene polymers were dominant. In the southern area of Kuroshio, the contribution of polystyrene and larger-sized plastic was higher, suggesting a rapid influx of fresh particles from western Japan to offshore by the northwest monsoon.
Collapse
Affiliation(s)
- Gajahin Gamage Nadeeka Thushari
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Department of Animal Science, Faculty of Animal Science & Export Agriculture, Uva Wellassa University, Passara Road, Badulla 90 000, Sri Lanka.
| | - Kentaro Miyazono
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takuya Sato
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Rei Yamashita
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwanoha, Kashiwa-shi, Chiba 277-8564, Japan
| | - Akinori Takasuka
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mikio Watai
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan
| | - Tohya Yasuda
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan
| | - Hiroshi Kuroda
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, 116 Katsurakoi, Kushiro, Hokkaido 085-0802, Japan
| | - Kazutaka Takahashi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
39
|
Zhao H, Huang X, Yang Y, Wang L, Zhao X, Yan F, Yang Y, Gao P, Ji P. The role of available nitrogen in the adsorption of polystyrene nanoplastics on magnetic materials. WATER RESEARCH 2023; 229:119481. [PMID: 36521314 DOI: 10.1016/j.watres.2022.119481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Several studies have been conducted on nanoplastics (NPs). However, few studies have investigated the complexity of the interactions between NPs and other aqueous pollutants in multi-solute media. In this study, the adsorption of polystyrene nanoplastics (PSNPs) on magnetic materials (MS) in the presence of available nitrogen (AN) was studied. The results demonstrated that the adsorbed amount of PSNPs increased in the presence of ammonium nitrogen (NH4+-N), whereas no significant difference was detected on the adsorbed amount of PSNPs using nitrate nitrogen (NO3--N) as a cosolute. The increase in the adsorbed amount of PSNPs was attributed to the formation of an MS-PSNPs-NH4+-N complex. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and zeta potential analyses indicated that the PSNPs with NH4+-N as a cosolute can be bound on the MS surfaces. Moreover, the change in the PSNPs amount adsorbed by MS depends on the valence state, electronegativity of the coexisting ions, and the surface properties and functional groups of PSNPs. Additionally, the ionic strength, dissolved organic matter, solution pH, metal cations and the subsequent release of MS-coated PSNPs and NH4+-N changed considerably in different aquatic systems and artificial nitrating fluids. Among different natural aquatic systems, the PSNPs adsorption on MS was excellent in lake water. The results indicate high potential for the attachment of PSNPs to MS in the presence of AN and further deepen the understanding of removing NPs using magnetic materials in aqueous systems with various coexisting contaminants.
Collapse
Affiliation(s)
- Hanghang Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xunrong Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Yinan Yang
- Meteorological Bureau of Chengcheng County, Weinan, 715200, China
| | - Lu Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xin Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Fan Yan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Yue Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Pengcheng Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Puhui Ji
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; Shaanxi Ghanshan Cui Environmental Protection Technology Co., Ltd., Room 202-2, Zone A, China-South Korea Industrial Park, Gaoke 3rd Road, Shaanxi Province, 712000, China.
| |
Collapse
|
40
|
Sun J, Tian Y, Liu S, Lin H, Du R, Lin H, Pan Z, Zhang Z, Xu W. Microplastic pollution threats coastal resilience and sustainability in Xiamen City, China. MARINE POLLUTION BULLETIN 2023; 187:114516. [PMID: 36621297 DOI: 10.1016/j.marpolbul.2022.114516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/25/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Microplastics have raised growing awareness due to their ubiquity and menaces to coastal resilience and sustainability. The abundance, distribution, and characteristics of microplastics in water and organisms in Xiamen were evaluated. Results showed that the average abundance of microplastics in the surface water of Xiamen Bay was 1.55 ± 1.94 items/m3. The dominant color, size, shape, and polymer type were white, 1.0-2.5 mm, and fragments and lines, and polyethylene and polypropylene, respectively. The average abundance of microplastics in the fish in Xiamen was 2.44 ± 1.56 items/g wet weight. They were dominated by fibers of blue polyethersulfone and polyethylene terephthalate, and sizes <2.5 mm. There was a negative correlation between the polymer type in fish and that in water, while a positive correlation between shapes of microplastics of both fish species. Results will aid in formulating management measures for preventing microplastic pollution in Xiamen, ultimately promoting coastal resilience and sustainability of coastal communities.
Collapse
Affiliation(s)
- Jincheng Sun
- College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China; Laboratory of Marine Ecological Environment Early Warning and Monitoring, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yongqiang Tian
- Xiamen Environmental Monitoring Center Station in Fujian Province, Xiamen 360200, China.
| | - Shuanxi Liu
- University of Science and Technology Beijing, Beijing 100083, China
| | - Haitao Lin
- Laboratory of Marine Ecological Environment Early Warning and Monitoring, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Rupeng Du
- College of Environment and Ecology, Xiamen University, Xiamen 361105, China
| | - Hui Lin
- Laboratory of Marine Ecological Environment Early Warning and Monitoring, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Zhong Pan
- Laboratory of Marine Ecological Environment Early Warning and Monitoring, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Zhisong Zhang
- Xiamen Environmental Monitoring Center Station in Fujian Province, Xiamen 360200, China
| | - Wenfeng Xu
- Xiamen Environmental Monitoring Center Station in Fujian Province, Xiamen 360200, China.
| |
Collapse
|
41
|
Nuamah F, Tulashie SK, Debrah JS. Assessing contamination of microplastics in the Ghanaian coastal sea using a self-constructed LADI trawl. MARINE POLLUTION BULLETIN 2022; 182:114006. [PMID: 35939935 DOI: 10.1016/j.marpolbul.2022.114006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Almost everywhere in the marine ecosystem contains microplastics. Although their environmental contamination is a global problem, relatively little is known about their distribution and abundance in the Gulf of Guinea. This study looked at the spatial dynamics of microplastics in the sea surface water off the coast of Ghana. Four chosen areas were found to have non-variable concentrations ranging from 1.14 to 2.79 particles m-3 using a self-constructed Low-Tech Aquatic Debris Instrument (LADI) trawl (333 μm mesh). The most abundant shapes were fragments and pellets, while the most common colors were colored and transparent particles. The polymer types found in the microplastics selected for investigation using Fourier Transform Infrared spectroscopy in Attenuated Total Reflectance mode (ATR-FT-IR) were Polypropylene, Polyethylene, and Polystyrene. These results provide an important baseline on microplastic pollution along the Ghanaian coast suggesting the LADI trawl as an accurate quantitative sampling tool for microplastics from sea surface water.
Collapse
Affiliation(s)
- Francis Nuamah
- Centre for Coastal Management-Africa Centre of Excellence in Coastal Resilience, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Kofi Tulashie
- Centre for Coastal Management-Africa Centre of Excellence in Coastal Resilience, University of Cape Coast, Cape Coast, Ghana; University of Cape Coast, College of Agriculture and Natural Sciences, School of Physical Sciences, Chemistry Department, Industrial Chemistry Unit, Cape Coast, Ghana.
| | - Joseph Sefah Debrah
- University of Cape Coast, College of Agriculture and Natural Sciences, School of Biological Sciences, Department of Fisheries and Aquatic Sciences, Cape Coast, Ghana
| |
Collapse
|