1
|
Liu H, Yu J. Ozonation degradation of wastewater using rotational hydrodynamic cavitation reactor with a conical rotor. ENVIRONMENTAL TECHNOLOGY 2024:1-16. [PMID: 39157964 DOI: 10.1080/09593330.2024.2391075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
Water pollution caused by an abusive discharge of dye-containing wastewater leads to serious ecological risks. Conventional wastewater treatment methods have shortcomings of incomplete degradation, long-time treatment and secondary pollution. For the first time, a rotational hydrodynamic cavitation reactor (RHCR) equipped with a conical rotor has been designed to enhance the ozonation process for effective degradation of pollutants. The effects of rotational speed, discharge voltage, gas flow rate, liquid flow rate and initial pH on methylene blue (MB) degradation were deeply investigated. The optimised conditions were initial pH = 9, rotational speed = 1800 rpm, discharge voltage = 9.3 kV, gas flow rate = 60 mL/min and liquid flow rate = 80 mL/min. With the integration of ozonation and cavitation in RHCR, the MB degradation efficiency reached 95.2%, which was 15.6% higher than that of the individual ozonation method. The degradation process was proven to track the first-order kinetic model, with the reaction rate and synergy index were 0.232 min-1 and 1.78, respectively. Through the quenching experiments, it can be confirmed that the contribution proportion of hydroxyl radical during degradation was increased by 8.7% due to the enhancement of cavitation. A required energy consumption of 74.7 kWh/order/m3 and a total expense of 8.7 $/m3 were calculated. The energy consumption of the RHCR was approximately 80% lower than that of the recently reported degradation system combining ozonation and cavitation, with total expense reduced by 52%. The findings of this work provide a new water treatment method and offered theoretical references for the design of RHCR.
Collapse
Affiliation(s)
- Huiyang Liu
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, People's Republic of China
- School of Mechanical Engineering, Jiangnan University, Wuxi, People's Republic of China
| | - Jianfeng Yu
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, People's Republic of China
- School of Mechanical Engineering, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
2
|
Ratchnashree SR, Karmegam N, Selvam M, Manikandan S, Deena SR, Subbaiya R, Vickram AS, Kim W, Govarthanan M. Advanced technologies for the determination of quantitative structure-activity relationships and degradation efficiency of micropollutants and their removal in water - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166563. [PMID: 37647970 DOI: 10.1016/j.scitotenv.2023.166563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/05/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
The growing concentrations of micropollutants in aquatic ecosystems are a global water quality issue. Understanding micropollutants varied chemical composition and potency is essential to solving this complex issue. Micropollutants management requires identifying contaminants to reduce, optimal reduction targets, and the best wastewater recycling locations. Management requires appropriate technological measures. Pharmaceuticals, antibiotics, hormones, and other micropollutants can enter the aquatic environment from point and diffuse sources, with wastewater treatment plants (WWTPs) distributing them in urban areas. Micropollutants like pharmaceuticals and hormones may not be removed by conventional WWTPs. Micropollutants affect the EU, especially in densely populated areas where surface water is consumed. This review examines several technological options that can be integrated into existing treatment methods to address this issue. In this work, oxidation, activated carbon, and their combinations as potential solutions, considering their efficacy and cost were evaluated. This study illuminates micropollutants origin and physico-chemical properties, which affect distribution, persistence, and environmental impacts. Understanding these factors helps us develop targeted micropollutant mitigation strategies to protect water quality. This review can inform policy and decision-making to reduce micropollutant impacts on aquatic ecosystems and human health.
Collapse
Affiliation(s)
- S R Ratchnashree
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai 600 095, Tamil Nadu, India
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem 636007, Tamil Nadu, India
| | - Masilamani Selvam
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai 600 095, Tamil Nadu, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105. Tamil Nadu, India.
| | - Santhana Raj Deena
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105. Tamil Nadu, India
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia.
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105. Tamil Nadu, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600 077, India.
| |
Collapse
|
3
|
Qadafi M, Rosmalina RT, Pitoi MM, Wulan DR. Chlorination disinfection by-products in Southeast Asia: A review on potential precursor, formation, toxicity assessment, and removal technologies. CHEMOSPHERE 2023; 316:137817. [PMID: 36640978 DOI: 10.1016/j.chemosphere.2023.137817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
This review discusses disinfection by-products' (DBPs) potential precursors, formation, and toxicity, alongside available research on the treatment of DBPs in Southeast Asian countries' water sources. Although natural organic matter (NOM) in the form of humic and fulvic acids is the major precursor of DBPs formation, the presence of anthropogenic organic matter (AOM) also plays essential roles during disinfection using chlorine. NOM has been observed in water sources in Southeast Asian countries, with a relatively high concentration in peat-influenced water sources and a relatively low concentration in non-peat-influenced water sources. Similarly, AOMs, such as microplastics, pharmaceuticals, pesticides, and endocrine-disrupting chemicals (EDCs), have also been detected in water sources in Southeast Asian countries. Although studies regarding DBPs in Southeast Asian countries are available, they focus on regulated DBPs. Here, the formation potential of unregulated DBPs is also discussed. In addition, the toxicity associated with extreme DBPs' formation potential, as well as the effectiveness of treatments such as conventional coagulation, filtration, adsorption, and ozonation in reducing DBPs' formation potential in Southeast Asian sources of water, is also analyzed.
Collapse
Affiliation(s)
- Muammar Qadafi
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Jalan Sangkuriang, Bandung, 40135, Indonesia.
| | - Raden Tina Rosmalina
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Jalan Sangkuriang, Bandung, 40135, Indonesia
| | - Mariska M Pitoi
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Jalan Sangkuriang, Bandung, 40135, Indonesia
| | - Diana Rahayuning Wulan
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Jalan Sangkuriang, Bandung, 40135, Indonesia.
| |
Collapse
|
4
|
Liu H, Yu J, Liu X. Study on the ozonation degradation of methylene blue enhanced by microchannel and ultrasound. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:598-613. [PMID: 36789706 DOI: 10.2166/wst.2023.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Azo dye-containing wastewater poses serious risks of environmental pollution because it is generally biologically toxic and resistant to conventional wastewater treatment methods. A novel degradation system integrating ozone, microchannel, and ultrasound was designed to effectively degrade azo dye-contaminated wastewater. The effects of discharge voltage of dielectric barrier discharge (DBD) reactor, liquid flow rate, microchannel width, ultrasonic power, initial pH, and reaction temperature on methylene blue (MB) decolorization were studied. A maximum MB decolorization efficiency of 92.7% was obtained in the ozone/microchannel/ultrasound (O3/MC/US) system with 14 min of treatment. In addition, the 14-min decolorization efficiency and TOC removal efficiency obtained in O3/MC/US system were increased by 12.6 and 6.5%, respectively, compared to those obtained in the pure O3 system. Based on the results of scavenging experiments, the combined effects of microchannel and ultrasound were proved to improve the contribution rate of hydroxyl radicals, thus improving the decolorization efficiency. The present work clearly illustrates that ozonation degradation can be effectively enhanced by microchannel and ultrasound, and also provides a feasible method for the treatment of organic wastewater.
Collapse
Affiliation(s)
- Huiyang Liu
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi, Jiangsu Province 214122, China ; School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Jianfeng Yu
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi, Jiangsu Province 214122, China ; School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Xiangyu Liu
- Chengxian College, Southeast University, Nanjing, Jiangsu Province 210088, China
| |
Collapse
|
5
|
Biodegradation of Iprodione and Chlorpyrifos Using an Immobilized Bacterial Consortium in a Packed-Bed Bioreactor. Microorganisms 2023; 11:microorganisms11010220. [PMID: 36677512 PMCID: PMC9861835 DOI: 10.3390/microorganisms11010220] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
This work provides the basis for implementing a continuous treatment system using a bacterial consortium for wastewater containing a pesticide mixture of iprodione (IPR) and chlorpyrifos (CHL). Two bacterial strains (Achromobacter spanius C1 and Pseudomonas rhodesiae C4) isolated from the biomixture of a biopurification system were able to efficiently remove pesticides IPR and CHL at different concentrations (10 to 100 mg L-1) from the liquid medium as individual strains and free consortium. The half-life time (T1/2) for IPR and CHL was determined for individual strains and a free bacterial consortium. However, when the free bacterial consortium was used, a lower T1/2 was obtained, especially for CHL. Based on these results, an immobilized bacterial consortium was formulated with each bacterial strain encapsulated individually in alginate beads. Then, different inoculum concentrations (5, 10, and 15% w/v) of the immobilized consortium were evaluated in batch experiments for IPR and CHL removal. The inoculum concentration of 15% w/v demonstrated the highest pesticide removal. Using this inoculum concentration, the packed-bed bioreactor with an immobilized bacterial consortium was operated in continuous mode at different flow rates (30, 60, and 90 mL h-1) at a pesticide concentration of 50 mg L-1 each. The performance in the bioreactor demonstrated that it is possible to efficiently remove a pesticide mixture of IPR and CHL in a continuous system. The metabolites 3,5-dichloroaniline (3,5-DCA) and 3,5,6-trichloro-2-pyridinol (TCP) were produced, and a slight accumulation of TCP was observed. The bioreactor was influenced by TCP accumulation but was able to recover performance quickly. Finally, after 60 days of operation, the removal efficiency was 96% for IPR and 82% for CHL. The findings of this study demonstrate that it is possible to remove IPR and CHL from pesticide-containing wastewater in a continuous system.
Collapse
|
6
|
Sun J, Jiang C, Wu Z, Liu Y, Sun S. A review on the progress of the photocatalytic removal of refractory pollutants from water by BiOBr-based nanocomposites. CHEMOSPHERE 2022; 308:136107. [PMID: 35998730 DOI: 10.1016/j.chemosphere.2022.136107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/28/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Organic matters from various sources such as the manufacturing, agricultural, and pharmaceuticals industries is continuously discharged into water bodies, leading to increasingly serious water pollution. Photocatalytic technology is a clean and green advanced oxidation process, that can successfully decompose various organic pollutants into small inorganic molecules such as carbon dioxide and water under visible light irradiation. Bismuth oxybromide (BiOBr) is an attractive visible light photocatalyst with good photocatalytic performance, suitable forbidden bandwidth, and a unique layered structure. However, the rapid combination of the electron-hole pairs generated in BiOBr leads to low photocatalytic activity, which limits its photocatalytic performance. Due to its unique electronic structure, BiOBr can be coupled with a variety of different functional materials to improve its photocatalytic performance. In this paper, We present the morphologically controllable BiOBr and its preparation process with the influence of raw materials, additives, solvents, synthesis methods, and synthesis conditions. Based on this, we propose design synthesis considerations for BiOBr-based nanocomplexes in four aspects: structure, morphology and crystalline phase, reduction of electron-hole pair complexation, photocorrosion resistance, and scale-up synthesis. The literature on BiOBr-based nanocomposites in the last 10 years (2012-2022) are summarized into seven categories, and the mechanism of enhanced photocatalytic activity of BiOBr-based nanocomposites is reviewed. Moreover, the applications of BiOBr-based nanocomposites in the fields of degradation of dye wastewater, antibiotic wastewater, pesticide wastewater, and phenol-containing wastewater are reviewed. Finally, the current challenges and prospects of BiOBr-based nanocomposites are briefly described. In general, this paper reviews the construction of BiOBr-based nanocomposites, the mechanism of photocatalytic activity enhancement and its research status and application prospects in the degradation of organic pollutants.
Collapse
Affiliation(s)
- Julong Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Changbo Jiang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China.
| | - Zhiyuan Wu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Yizhuang Liu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Shiquan Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| |
Collapse
|
7
|
Zhao J, Peng J, Shang C, Yin R. Revisiting the protocol for determining submicromolar concentrations of ozone in the water treated by advanced oxidation processes. CHEMOSPHERE 2022; 303:135117. [PMID: 35636598 DOI: 10.1016/j.chemosphere.2022.135117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Ozone is formed at submicromolar concentrations from photolysis of many oxyanions and oxidants in water and contributes importantly to the degradation of emerging contaminants and inactivation of pathogenic microorganisms in the natural and engineered aquatic systems. In this study, we identified and discussed the critical limitations of the commonly-used protocols using cinnamic acid (CNA) as a probe compound to determine the submicromolar-level ozone and proposed a modified protocol that overcomes those limitations. Our experimental investigation demonstrated that the radicals (e.g., HO•) formed from photolysis of oxyanions and oxidants, other than ozone, could also oxidize CNA and form benzaldehyde, resulting in the overestimation of ozone concentrations by using the commonly-used protocols. Moreover, the benzaldehyde formed from ozone-CNA reactions could be degraded by the radicals, leading to the underestimation of ozone concentrations by using the commonly-used protocols. A new protocol with high accuracy and precision was proposed and the rationales for each operational step of the new protocol were explained in detail and supported with justifications. The new protocol was compared with two commonly-used protocols in determining the concentration of ozone in the same water sample treated by the UV/chlorine process at three different UV wavelengths. The wavelength-dependent overestimation/underestimation of the ozone concentrations by using the two commonly-used protocols was well demonstrated and explained by the overlooked interferences of radicals in the protocols.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jiadong Peng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|