1
|
Jun BM, Chae SH, Kim D, Jung JY, Kim TJ, Nam SN, Yoon Y, Park C, Rho H. Adsorption of uranyl ion on hexagonal boron nitride for remediation of real U-contaminated soil and its interpretation using random forest. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134072. [PMID: 38522201 DOI: 10.1016/j.jhazmat.2024.134072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/09/2024] [Accepted: 03/16/2024] [Indexed: 03/26/2024]
Abstract
Acid leaching has been widely applied to treat contaminated soil, however, it contains several inorganic pollutants. The decommissioning of nuclear power plants introduces radioactive and soluble U(VI), a substance posing chemical toxicity to humans. Our investigation sought to ascertain the efficacy of hexagonal boron nitride (h-BN), an highly efficient adsorbent, in treating U(VI) in wastewater. The adsorption equilibrium of U(VI) by h-BN reached saturation within a mere 2 h. The adsorption of U(VI) by h-BN appears to be facilitated through electrostatic attraction, as evidenced by the observed impact of pH variations, acidic agents (i.e., HCl or H2SO4), and the presence of background ions on the adsorption performance. A reusability test demonstrated the successful completion of five cycles of adsorption/desorption, relying on the surface characteristics of h-BN as influenced by solution pH. Based on the experimental variables of initial U(VI) concentration, exposure time, temperature, pH, and the presence of background ions/organic matter, a feature importance analysis using random forest (RF) was carried out to evaluate the correlation between performances and conditions. To the best of our knowledge, this study is the first attempt to conduct the adsorption of U(VI) generated from real contaminated soil by h-BN, followed by interpretation of the correlation between performance and conditions using RF. Lastly, a. plausible adsorption mechanism between U(VI) and h-BN was explained based on the experimental results, characterizations, and a. comparison with previous adsorption studies on the removal of heavy metals by h-BN.
Collapse
Affiliation(s)
- Byung-Moon Jun
- Radwaste Management Center, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok-Daero 989beon-gil, Yuseong-Gu, Daejeon 34057, Republic of Korea
| | - Sung Ho Chae
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Deokhwan Kim
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283 Goyang-Daero, Ilsanseo-Gu, Goyang-si, Gyeonggi-do 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon 34113, Republic of Korea
| | - Jun-Young Jung
- Radwaste Management Center, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok-Daero 989beon-gil, Yuseong-Gu, Daejeon 34057, Republic of Korea
| | - Tack-Jin Kim
- Radwaste Management Center, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok-Daero 989beon-gil, Yuseong-Gu, Daejeon 34057, Republic of Korea
| | - Seong-Nam Nam
- Department of Chemical and Environmental Science, Korea Army Academy, Yeong-Cheon 495 Hoguk-ro, Gokyeong-myeon, Yeongcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - Yeomin Yoon
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Chanhyuk Park
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Hojung Rho
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283 Goyang-Daero, Ilsanseo-Gu, Goyang-si, Gyeonggi-do 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
2
|
Tomczak W, Gryta M, Daniluk M, Żak S. Biogas Upgrading Using a Single-Membrane System: A Review. MEMBRANES 2024; 14:80. [PMID: 38668108 PMCID: PMC11051867 DOI: 10.3390/membranes14040080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
In recent years, the use of biogas as a natural gas substitute has gained great attention. Typically, in addition to methane (CH4), biogas contains carbon dioxide (CO2), as well as small amounts of impurities, e.g., hydrogen sulfide (H2S), nitrogen (N2), oxygen (O2) and volatile organic compounds (VOCs). One of the latest trends in biogas purification is the application of membrane processes. However, literature reports are ambiguous regarding the specific requirement for biogas pretreatment prior to its upgrading using membranes. Therefore, the main aim of the present study was to comprehensively examine and discuss the most recent achievements in the use of single-membrane separation units for biogas upgrading. Performing a literature review allowed to indicate that, in recent years, considerable progress has been made on the use of polymeric membranes for this purpose. For instance, it has been documented that the application of thin-film composite (TFC) membranes with a swollen polyamide (PA) layer ensures the successful upgrading of raw biogas and eliminates the need for its pretreatment. The importance of the performed literature review is the inference drawn that biogas enrichment performed in a single step allows to obtain upgraded biogas that could be employed for household uses. Nevertheless, this solution may not be sufficient for obtaining high-purity gas at high recovery efficiency. Hence, in order to obtain biogas that could be used for applications designed for natural gas, a membrane cascade may be required. Moreover, it has been documented that a significant number of experimental studies have been focused on the upgrading of synthetic biogas; meanwhile, the data on the raw biogas are very limited. In addition, it has been noted that, although ceramic membranes demonstrate several advantages, experimental studies on their applications in single-membrane systems have been neglected. Summarizing the literature data, it can be concluded that, in order to thoroughly evaluate the presented issue, the long-term experimental studies on the upgrading of raw biogas with the use of polymeric and ceramic membranes in pilot-scale systems are required. The presented literature review has practical implications as it would be beneficial in supporting the development of membrane processes used for biogas upgrading.
Collapse
Affiliation(s)
- Wirginia Tomczak
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland; (M.D.); (S.Ż.)
| | - Marek Gryta
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland
| | - Monika Daniluk
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland; (M.D.); (S.Ż.)
| | - Sławomir Żak
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland; (M.D.); (S.Ż.)
| |
Collapse
|
3
|
Kim M, Choi W, Lee CH, Kim DW. 2D MOFs and Zeolites for Composite Membrane and Gas Separation Applications: A Brief Review. ACS MATERIALS AU 2024; 4:148-161. [PMID: 38496048 PMCID: PMC10941277 DOI: 10.1021/acsmaterialsau.3c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 03/19/2024]
Abstract
Commercial membranes have predominantly been fabricated from polymers due to their economic viability and processability. This choice offers significant advantages in energy efficiency, cost-effectiveness, and operational simplicity compared to conventional separation techniques like distillation. However, polymeric membranes inherently exhibit a trade-off between their permeability and selectivity, which is summarized in the Robeson upper bound. To potentially surpass these limitations, mixed-matrix membranes (MMMs) can be an alternative solution, which can be constructed by combining polymers with inorganic additives such as metal-organic frameworks (MOFs) and zeolites. Incorporating high-aspect-ratio fillers like MOF nanosheets and zeolite nanosheets is of significant importance. This incorporation not only enhances the efficiency of separation processes but also reinforces the mechanical robustness of the membranes. We outline synthesis techniques for producing two-dimensional (2D) crystals (including nanocrystals with high aspect ratio) and provide examples of their integration into membranes to customize separation performances. Moreover, we propose a potential trajectory for research in the area of high-aspect-ratio materials-based MMMs, supported by a mathematical-model-based performance prediction.
Collapse
Affiliation(s)
- Minsu Kim
- Department of Chemical and
Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Wooyoung Choi
- Department of Chemical and
Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Choong Hoo Lee
- Department of Chemical and
Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Dae Woo Kim
- Department of Chemical and
Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Khan MA, Lipscomb G, Lin A, Baldridge KC, Petersen EM, Steele J, Abney MB, Bhattacharyya D. Performance evaluation and model of spacesuit cooling by hydrophobic hollow fiber-membrane based water evaporation through pores. J Memb Sci 2023; 673:121497. [PMID: 38075431 PMCID: PMC10705846 DOI: 10.1016/j.memsci.2023.121497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
A comprehensive mathematical model is presented that accurately estimates and predicts failure modes through the computations of heat rejection, temperature drop and lumen side pressure drop of the hollow fiber (HF) membrane-based NASA Spacesuit Water Membrane Evaporator (SWME). The model is based on mass and energy balances in terms of the physical properties of water and membrane transport properties. The mass flux of water vapor through the pores is calculated based on Knudsen diffusion with a membrane structure parameter that accounts for effective mean pore diameter, porosity, thickness, and tortuosity. Lumen-side convective heat transfer coefficients are calculated from laminar flow boundary layer theory using the Nusselt correlation. Lumen side pressure drop is estimated using the Hagen-Poiseuille equation. The coupled ordinary differential equations for mass flow rate, water temperature and lumen side pressure are solved simultaneously with the equations for mass flux and convective heat transfer to determine overall heat rejection, water temperature and lumen side pressure drop. A sensitivity analysis is performed to quantify the effect of input variability on SWME response and identify critical failure modes. The analysis includes the potential effect of organic and/or inorganic contaminants and foulants, partial pore entry due to hydrophilization, and other unexpected operational failures such as bursting or fiber damage. The model can be applied to other hollow fiber membrane-based applications such as low temperature separation and concentration of valuable biomolecules from solution.
Collapse
Affiliation(s)
- M. Arif Khan
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506
| | - Glenn Lipscomb
- Chemical Engineering Department and School of Green Chemistry and Engineering, University of Toledo, Toledo, OH 43606
| | - Andrew Lin
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506
| | - Kevin C. Baldridge
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506
| | - Elspeth M. Petersen
- National Aeronautics and Space Administration, Kennedy Space Center, FL 32899
| | | | - Morgan B. Abney
- National Aeronautics and Space Administration, Langley Research Center, Hampton, VA 23666
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506
| |
Collapse
|
5
|
Naquash A, Qyyum MA, Chaniago YD, Riaz A, Yehia F, Lim H, Lee M. Separation and purification of syngas-derived hydrogen: A comparative evaluation of membrane- and cryogenic-assisted approaches. CHEMOSPHERE 2023; 313:137420. [PMID: 36460151 DOI: 10.1016/j.chemosphere.2022.137420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/13/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Hydrogen (H2) separation and purification is challenging because of the high purity and recovery requirements in particular applications, as well as the critical properties of H2 and its associated components. Unlike pressure swing adsorption, cryogenic- and membrane-based technologies are currently employed for H2 separation. Membrane-assisted (case-I) and cryogenic-assisted (case-II) separation and purification of H2 were evaluated in this study in terms of the energy, exergy, and economic aspects of the processes. In case-I and case-II, H2 was first produced from synthesis gas via the water-gas shift reaction and was then separated from other components using membrane and cryogenic systems, respectively. Additionally, an organic Rankine cycle was integrated with the water-gas shift reactors to recover the waste heat. A well-known commercial process simulation software, Aspen Hysys® v11, was employed to simulate both processes. Energy analysis revealed that case-I has a lower energy consumption (0.50 kWh/kg) than case-II (2.01 kWh/kg). However, low H2 purity and recovery rates are the main limitations of case-I. In terms of exergy, the H2 separation section in case-I exhibited a higher efficiency (28.4%) than case-II (14.7%). Furthermore, the economic evaluation showed that case-I was more expensive ($17.7 M) than case-II ($10.2 M) because of the high cost of the compressors required. In conclusion, this study could assist industry practitioners and academic researchers in selecting optimal H2 separation and purification technologies for improving the overall H2 economy.
Collapse
Affiliation(s)
- Ahmad Naquash
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Muhammad Abdul Qyyum
- Petroleum and Chemical Engineering Department, College of Engineering, Sultan Qaboos University, Muscat, Oman.
| | - Yus Donald Chaniago
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Amjad Riaz
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Fatma Yehia
- Exploration Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, Egypt
| | - Hankwon Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Moonyong Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
6
|
Pazani F, Shariatifar M, Salehi Maleh M, Alebrahim T, Lin H. Challenge and promise of mixed matrix hollow fiber composite membranes for CO2 separations. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|