1
|
Amiri S, Chahkandi M, Zargazi M. Ag 2O@UiO-66 new thin film as p-n heterojunction: permanent photoreduction of hexavalent Cr. RSC Adv 2024; 14:3867-3877. [PMID: 38274162 PMCID: PMC10810231 DOI: 10.1039/d3ra06305d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
The new nanosphere Ag2O@UiO-66 thin-film was synthesized on a stainless steel mesh surface via an electrophoretic deposition method, and is used as an effective and low-cost photocatalyst using visible light. The synthesized nanocomposite was used to perform photo-reduction of Cr(vi) ions under white light irradiation. The best removal rate (72% after 15 minutes) was obtained by the film with 0.034 grams of deposited composite having relative percentages of Ag2O : UiO-66 of 70 : 30. The interesting obtained results confirm that the p-n heterojunction of the composite is the main cause of the desired charge separation and the photoreduction speed increase. In the following, the resulting compounds were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), transmittance electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), energy diffraction X-ray spectroscopy (EDAX) and the Brunauer, Emmett, and Teller (BET) method. Scavenging studies performed in the presence of familiar scavengers confirmed that superoxide radicals (˙O2-) and dissolved oxygen gas have a significant role in the photocatalytic reduction process.
Collapse
Affiliation(s)
- Sara Amiri
- Department of Chemistry, Hakim Sabzevari University Sabzevar 96179-76487 Iran +985144013501 +985144013525
| | - Mohammad Chahkandi
- Department of Chemistry, Hakim Sabzevari University Sabzevar 96179-76487 Iran +985144013501 +985144013525
| | - Mahboobeh Zargazi
- Sonochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
2
|
Soleimani-Gorgani A, Al-Hazmi HE, Esmaeili A, Habibzadeh S. Screen-printed Sn-doped TiO 2 nanoparticles for photocatalytic dye removal from wastewater: A technological perspective. ENVIRONMENTAL RESEARCH 2023; 237:117079. [PMID: 37683779 DOI: 10.1016/j.envres.2023.117079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
TiO2 is widely used as a photocatalyst with a wide band gap, which limited its application. Ion doping and formulating a high-quality screen-printing paste enhance its features. However, the printability of objects for advanced application seems essential nowadays. In this research, the Sn-doped TiO2 nanoparticles were prepared through a sol-gel method followed by calcination at various temperatures of 450 °C, 550 °C, 650 °C, 750 °C, and 850 °C. Screen-printing pastes were prepared with 18 wt% of the synthesized Sn-doped TiO2 nanoparticles to evaluate photocatalytic activity. Finally, the prepared paste with optimum nanoparticle concentration was screen printed onto the microscope glass slides at various printing times (1, 3, and 5 runs) and annealed at 500 °C temperature to investigate the thickness of printed Sn-doped TiO2 nanoparticles effect. The photocatalytic activity and crystal structure of nano Sn-doped-TiO2 were characterized using photoluminescence (PL) spectroscopy and X-ray diffraction (XRD). Transmission electron microscopy (TEM) and scanning electron microscope (SEM) analyses were conducted to investigate the size and morphology of the prepared nanoparticles, respectively. The highest photocatalytic activity for the degradation of methylene blue was obtained at the calcination temperature of 450 °C.
Collapse
Affiliation(s)
- Atasheh Soleimani-Gorgani
- Department of Printing Science and Technology, Institute for Color Science and Technology, 16765654, Tehran, Iran.
| | - Hussein E Al-Hazmi
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology, And Industrial Trades, College of the North Atlantic-Qatar, Doha, Qatar
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology, Tehran, 1599637111, Iran
| |
Collapse
|
3
|
Moradian S, Badiei A, Mohammadi Ziarani G, Mohajer F, Varma RS, Iravani S. Black Phosphorus-based Photocatalysts: Synthesis, Properties, and Applications. ENVIRONMENTAL RESEARCH 2023; 237:116910. [PMID: 37597834 DOI: 10.1016/j.envres.2023.116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Photocatalysis is considered as an eco-friendly and sustainable strategy, since it uses abundant light for the advancement of the reaction, which is freely accessible and is devoid of environmental pollution. During the last decades, (nano)photocatalysts have gained broad industrial applications in terms of purification and detoxification of water as well as production of green fuels and hydrogen gas due to their special attributes. The degradation or remediation of toxic and hazardous compounds from the environment or changing them into non-toxic entities is a significant endeavor and necessary for the safety of humans, animals, and the environment. Black phosphorus (BP), a two-dimensional single-element material, has a marvelous structure, tunable bandgap, changeable morphology from bulk to nanosheet/quantum dot, and unique physicochemical properties, which makes it attractive material for photocatalytic applications, especially for sustainable development purposes. Since it can serve as a photocatalyst with or without coupling with other semiconductors, various aspects for multidimensional exploitation of BP are deliberated including their preparation via solvothermal, ball milling, calcination, and sonication methods to obtain BP from red phosphorus. The techniques for improving the photocatalytic and stability of BP-based composites are discussed along with their multifaceted applications for environmental remediation, pollution degradation, water splitting, N2 fixation, CO2 reduction, bacterial disinfection, H2 generation, and photodynamic therapy. Herein, most recent advancements pertaining to the photocatalytic applications of BP-based photocatalyst are cogitated, with a focus on their synthesis and properties as well as crucial challenges and future perspectives.
Collapse
Affiliation(s)
- Sahar Moradian
- School of Chemistry, College of Science, University of Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Iran.
| | | | - Fatemeh Mohajer
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil.
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran.
| |
Collapse
|
4
|
Budi HS, Farhood B. Tumor microenvironment remodeling in oral cancer: Application of plant derived-natural products and nanomaterials. ENVIRONMENTAL RESEARCH 2023; 233:116432. [PMID: 37331557 DOI: 10.1016/j.envres.2023.116432] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Oral cancers consist of squamous cell carcinoma (SCC) and other malignancies in the mouth with varying degrees of invasion and differentiation. For many years, different modalities such as surgery, radiation therapy, and classical chemotherapy drugs have been used to control the growth of oral tumors. Nowadays, studies have confirmed the remarkable effects of the tumor microenvironment (TME) on the development, invasion, and therapeutic resistance of tumors like oral cancers. Therefore, several studies have been conducted to modulate the TME in various types of tumors in favor of cancer suppression. Natural products are intriguing agents for targeting cancers and TME. Flavonoids, non-flavonoid herbal-derived molecules, and other natural products have shown promising effects on cancers and TME. These agents, such as curcumin, resveratrol, melatonin, quercetin and naringinin have demonstrated potency in suppressing oral cancers. In this paper, we will review and discuss about the potential efficacy of natural adjuvants on oral cancer cells. Furthermore, we will review the possible therapeutic effects of these agents on the TME and oral cancer cells. Moreover, the potential of nanoparticles-loaded natural products for targeting oral cancers and TME will be reviewed. The potentials, gaps, and future perspectives for targeting TME by nanoparticles-loaded natural products will also be discussed.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
5
|
Fooladi S, Nematollahi MH, Iravani S. Nanophotocatalysts in biomedicine: Cancer therapeutic, tissue engineering, biosensing, and drug delivery applications. ENVIRONMENTAL RESEARCH 2023; 231:116287. [PMID: 37263475 DOI: 10.1016/j.envres.2023.116287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023]
Abstract
Photocatalysis can be considered as a green technology owing to its excellent potential for sustainability and fulfilling several principles of green chemistry. This process uses light radiation as the primary energy source, preventing or reducing the requirement for artificial light sources and exogenous catalytic entities. Photocatalysis has promising applications in biomedicine such as drug delivery, biosensing, tissue engineering, cancer therapeutics, etc. In targeted cancer therapeutics, photocatalysis can be employed in photodynamic therapy to form reactive oxygen species that damage cancerous cells' structure. Nanophotocatalysts can be used in targeted drug delivery, showing potential applications in nuclear-targeted drug delivery along with specific delivery of chemotherapeutics to cancer cells or tumor sites. On the other hand, in tissue engineering, nanophotocatalysts can be employed in designing scaffolds that promote cell growth and tissue regeneration. However, some important challenges pertaining to the performance of photocatalysis, large-scale production of nanophotocatalysts, optimization of reaction/synthesis conditions, long-term biosafety issues, stability, clinical translation, etc. still need further explorations. Herein, the most recent advancements pertaining to the biomedical applications of nanophotocatalysts are reflected, focusing on drug delivery, tissue engineering, biosensing, and cancer therapeutic potentials.
Collapse
Affiliation(s)
- Saba Fooladi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran.
| |
Collapse
|
6
|
Song Y, Wang C, Sha J, Liu X, Han L, Li L. Photoelectrochemical sensor based on the sensitive interface of photosensitive electrode for the detection of hydrogen peroxide in dried bean curds. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
7
|
Du Y, Zhang Y, Pu X, Fu X, Li X, Bai L, Chen Y, Qian J. Synthesis of bifunctional NiFe layered double hydroxides (LDH)/Mo-doped g-C 3N 4 electrocatalyst for efficient methanol oxidation and seawater splitting. CHEMOSPHERE 2023; 312:137203. [PMID: 36375606 DOI: 10.1016/j.chemosphere.2022.137203] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
To boost the oxygen evolution reaction (OER) and methanol oxidation reaction (MOR) of pristine NiFe-layered double hydroxides (LDH), the NiFe-LDH/Mo-doped graphitic carbon nitride (NiFe-LDH/MoCN) heterojunction was synthesized herein through hydrothermal method. The establishment of built-in electric field in NiFe-LDH/MoCN heterojunction enhanced the electrochemical oxidation activities towards both seawater splitting and methanol oxidation, via the improving electrocatalyst surface wettability and conductivity. Almost 10-fold enhancement of turnover frequency (TOF) and electrochemical active surface area (ECSA) than pure NiFe-LDH implied more active sites to participate in catalytic reactions via Mo doping and the formation of heterostructure. Moreover, the local charge redistribution demonstrated in the NiFe-LDH/MoCN interface region may favor the adsorption of methanol and OH- in the seawater. The present work may expound the strong coupling interaction and the establishment of built-in electric field in the interface between NiFe-LDH and semiconductor to enhance both methanol oxidation and seawater oxidation for NiFe-LDH.
Collapse
Affiliation(s)
- Yufei Du
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, PR China
| | - Yichu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, PR China
| | - Xunchi Pu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Xiaoying Fu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Xuan Li
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Linqin Bai
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, PR China
| | - Yongjun Chen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, PR China
| | - Jin Qian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, PR China.
| |
Collapse
|
8
|
Karimi-Maleh H, Orooji Y, Yola ML. Pharmaceutical and personal care products (PPCPs) treatment and sensing by 2D carbon nanomaterials; challenges and perspectives. CHEMOSPHERE 2023; 311:136967. [PMID: 36273610 DOI: 10.1016/j.chemosphere.2022.136967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Mehmet Lutfi Yola
- Hasan Kalyoncu University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Gaziantep, Turkey
| |
Collapse
|
9
|
Ru J, Wang X, Zhao J, Yang J, Zhou Z, Du X, Lu X. Evaluation and development of GO/UiO-67@PtNPs nanohybrid-based electrochemical sensor for invisible arsenic (III) in water samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Simple high-temperature annealing affords commercial carbon cloth with enhanced electrochemical performance for highly sensitive detection of imidacloprid. J Pharm Biomed Anal 2022; 219:114963. [PMID: 35907320 DOI: 10.1016/j.jpba.2022.114963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 12/29/2022]
Abstract
Imidacloprid (IDP) residue in modern agricultural production seriously endangers human health and environmental safety. The establishment of a rapid and efficient method for the detection of IDP residue can effectively prevent its harm to human health. Herein, we demonstrate the carbon cloth (CC) prepared by a high-temperature annealing strategy possesses enhanced electrochemical performance, which could be directly used in electrochemical IDP sensing. Annealed carbon cloth (ACC) is endowed with higher defects, rougher surfaces, more functional groups, more hydrophilic surface, and increased ion-accessible surface area. Furthermore, the ACC electrode shows superior electrocatalytic reduction activity towards IDP, possessing a wide linear range of 5-100 μM, a low detection limit of 0.04 μM, and high sensitivity of 35.58 μA mM-1 cm-2. Meanwhile, this sensor can be applied for sensing IDP in grapes and apples with a good recovery of 96.8-104.1%. Compared with other modified electrodes, the ACC electrode has the advantages of no binder, no complicated modification, excellent detection effect, low cost, and easy large-scale production. Consequently, this work designs a self-supporting metal-free electrode with high electrochemical performance, providing a new idea for the development of environmentally friendly IDP sensors.
Collapse
|