1
|
Chen Z, Luo G, Ren J, Wang Q, Zhao X, Wei L, Wang Y, Liu Y, Deng Y, Li S. Recent Advances in and Application of Fluorescent Microspheres for Multiple Nucleic Acid Detection. BIOSENSORS 2024; 14:265. [PMID: 38920569 PMCID: PMC11201543 DOI: 10.3390/bios14060265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
Traditional single nucleic acid assays can only detect one target while multiple nucleic acid assays can detect multiple targets simultaneously, providing comprehensive and accurate information. Fluorescent microspheres in multiplexed nucleic acid detection offer high sensitivity, specificity, multiplexing, flexibility, and scalability advantages, enabling precise, real-time results and supporting clinical diagnosis and research. However, multiplexed assays face challenges like complexity, costs, and sample handling issues. The review explores the recent advancements and applications of fluorescent microspheres in multiple nucleic acid detection. It discusses the versatility of fluorescent microspheres in various fields, such as disease diagnosis, drug screening, and personalized medicine. The review highlights the possibility of adjusting the performance of fluorescent microspheres by modifying concentrations and carrier forms, allowing for tailored applications. It emphasizes the potential of fluorescent microsphere technology in revolutionizing nucleic acid detection and advancing health, disease treatment, and medical research.
Collapse
Affiliation(s)
- Zhu Chen
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| | - Gaoming Luo
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jie Ren
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| | - Qixuan Wang
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xinping Zhao
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Linyu Wei
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yue Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China;
| | - Yuan Liu
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| | - Yan Deng
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| | - Song Li
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| |
Collapse
|
2
|
Shkir M, AlAbdulaal TH, Ubaidullah M, Reddy Minnam Reddy V. Novel Bi 2WO 6/MWCNT nanohybrids synthesis for high-performance photocatalytic activity of ciprofloxacin degradation under simulated sunlight irradiation. CHEMOSPHERE 2023; 338:139432. [PMID: 37419154 DOI: 10.1016/j.chemosphere.2023.139432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
In this research, novel Bi2WO6/MWCNT nanohybrids were synthesized via a cost-effective hydrothermal route. The photocatalytic performance of these specimens was tested through the photodegradation of Ciprofloxacin (CIP) under simulated sunlight. Various physicochemical techniques systematically characterized the prepared pure, Bi2WO6/MWCNT nanohybrid photocatalysts. The XRD and Raman spectra revealed the structural/phase properties of Bi2WO6/MWCNT nanohybrids. FESEM and TEM pictures revealed the attachment and distribution of plate-like Bi2WO6 nanoparticles along the nanotubes. The optical absorption and bandgap energy of Bi2WO6 was affected by the addition of MWCNT, which was analyzed by UV-DRS spectroscopy. The introduction of MWCNT reduces the bandgap value of Bi2WO6 from 2.76 to 2.46 eV. The BWM-10 nanohybrid showed superior photocatalytic activity for CIP photodegradation; 91.3% of CIP was degraded under sunlight irradiation. The PL and transient photocurrent test confirm that photoinduced charge separation efficiency is better in BWM-10 nanohybrids. The scavenger test indicates that h+ & •O2 have mainly contributed to the CIP degradation process. Furthermore, the BWM-10 catalyst demonstrated outstanding reusability and firmness in four successive cycles. It is anticipated that the Bi2WO6/MWCNT nanohybrids will be employed as photocatalysts for environmental remediation and energy conversion. This research presents a novel technique for developing an effective photocatalyst for pollutant degradation.
Collapse
Affiliation(s)
- Mohd Shkir
- Department of Physics, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia.
| | - T H AlAbdulaal
- Department of Physics, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mohd Ubaidullah
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia; Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144411, India
| | | |
Collapse
|
3
|
Malathy A, Manikandan V, Devanesan S, Farhat K, Priyadharsan A, Ragavendran C, Ragupathy S, Ranjith R, Sivakumar S. Development of biohybrid Ag 2CrO 4/rGO based nanocomposites with stable flotation properties as enhanced Photocatalyst for sewage treatment and antibiotic-conjugated for antibacterial evaluation. Int J Biol Macromol 2023:125303. [PMID: 37311516 DOI: 10.1016/j.ijbiomac.2023.125303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023]
Abstract
The proposed research outlines a facile method to synthesize Silver Chromate/reduced graphene oxide nanocomposites (Ag2CrO4/rGO NCs) with a narrow dissemination size for the ecological treatment of hazardous organic dyes. The photodegradation performance toward the decontamination of model artificial methylene blue dye was assessed under solar light irradiation. The crystallinity, particle size, recombination of photogenerated charge carriers, energy gap and surface morphologies of synthesized nanocomposites were determined. The experiment objective is to use rGO nanocomposites to increase Ag2CrO4 photocatalytic efficiency in the solar spectrum. Tauc plots of ultraviolet-visible (UV-vis) spectrum were used to calculate the optical bandgap energy of the produced nanocomposites ~1.52 eV, which resulted in a good photodegradation percentage of ~92 % after 60 min irradiation of Solar light. At the same time, pure Ag2CrO4 and rGO nanomaterials showed ~46 % and ~ 30 %, respectively. The ideal circumstances were discovered by investigating the effects of several parameters, including catalyst loading and different pH levels, on the degradation of dyes. However, the final composites maintain their ability to degrade for up to five cycles. According to the investigations, Ag2CrO4/rGO NCs are an effective photocatalyst and can be used as the ideal material to prevent water pollution. Furthermore, antibacterial efficacy for the hydrothermally synthesized nanocomposite was tested against gram-positive (+ve) bacteria viz. Staphylococcus aureus and gram-negative (-ve) bacteria viz. Escherichia coli. The maximum zone of inhibition for S. aureus and E. coli were 18.5 and 17 mm, respectively.
Collapse
Affiliation(s)
- A Malathy
- Department of Chemistry, E.R.K Arts and Science College, Erumiyampatti, Dharmapuri, Tamilnadu 636 905, India
| | - Velu Manikandan
- Department of Food Science and Technology, Seoul Women's University, 621 Hwarangno, Nowon-gu, Seoul, South Korea
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Karim Farhat
- Department of Urology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - A Priyadharsan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamilnadu 600 077, India.
| | - C Ragavendran
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamilnadu 600 077, India
| | - S Ragupathy
- Department of Physics, E.R.K Arts and Science College, Erumiyampatti, Dharmapuri, Tamilnadu 636 905, India
| | - R Ranjith
- Department of Physics, KSR College of Engineering, Thiruchengode 637 215, Tamilnadu, India
| | - S Sivakumar
- Department of Chemistry, E.R.K Arts and Science College, Erumiyampatti, Dharmapuri, Tamilnadu 636 905, India.
| |
Collapse
|
4
|
Prusty D, Mansingh S, Priyadarshini N, Parida KM. Defect Control via Compositional Engineering of Zn-Cu-In-S Alloyed QDs for Photocatalytic H 2O 2 Generation and Micropollutant Degradation: Affecting Parameters, Kinetics, and Insightful Mechanism. Inorg Chem 2022; 61:18934-18949. [DOI: 10.1021/acs.inorgchem.2c02977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Deeptimayee Prusty
- Centre for Nanoscience and Nanotechnology, Siksha “O” Anusandhan (Deemed to be University), Bhubaneswar751030, Odisha, India
| | - Sriram Mansingh
- Centre for Nanoscience and Nanotechnology, Siksha “O” Anusandhan (Deemed to be University), Bhubaneswar751030, Odisha, India
| | - Newmoon Priyadarshini
- Centre for Nanoscience and Nanotechnology, Siksha “O” Anusandhan (Deemed to be University), Bhubaneswar751030, Odisha, India
| | - K. M. Parida
- Centre for Nanoscience and Nanotechnology, Siksha “O” Anusandhan (Deemed to be University), Bhubaneswar751030, Odisha, India
| |
Collapse
|