1
|
Huang Z, Chen Y, Zou J, Zhou P, Huang X, Zhuang R, Wang X, Liu L. Plant endophytic bacteria reduce phthalates accumulation in soil-crop-body system: a review. REVIEWS ON ENVIRONMENTAL HEALTH 2025:reveh-2024-0040. [PMID: 39899388 DOI: 10.1515/reveh-2024-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/08/2025] [Indexed: 02/05/2025]
Abstract
Phthalate esters (PAEs) represent a class of widely utilized plasticizers, resulting in their pervasive presence in soil and agricultural crops, which poses significant risks to human health. This review examines the current state of PAE pollution, the microbial resources available for PAE degradation, and the associated degradation pathways. It highlights the advantages of endophytic bacteria over environmental microorganisms, including the prolonged survival of inoculated strains, in vivo biodegradation of PAEs, and multifunctional capabilities. Furthermore, the mechanisms by which endophytic bacteria mitigate PAE accumulation across the three defense lines (soil, crops, and the human body) are elucidated. The integrated approach of employing both plants and microbial agents for the remediation of PAEs demonstrates considerable potential for ensuring the safety of agricultural products and safeguarding human health. This work offers new insights into addressing the challenges posed by organic pollutant contamination and reducing PAE accumulation in the human body.
Collapse
Affiliation(s)
- Ziyi Huang
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Yanli Chen
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Jieying Zou
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Peng Zhou
- Center for New Drug Research and Development, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Xingyu Huang
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Ruihao Zhuang
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Xinyu Wang
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Lihui Liu
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| |
Collapse
|
2
|
Manatunga DC, Sewwandi M, Perera KI, Jayarathna MD, Peramune DL, Dassanayake RS, Ramanayaka S, Vithanage M. Plasticizers: distribution and impact in aquatic and terrestrial environments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:2114-2131. [PMID: 39404615 DOI: 10.1039/d4em00317a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Plasticizers, essential additives for enhancing plastic properties, have emerged as significant environmental and health concerns due to their persistence and widespread use. This study provides an in-depth exploration of plasticizers, focusing on their types, structures, properties, production methods, environmental distribution, and associated risks. The findings reveal that petroleum-based phthalates, particularly di-(2-ethylhexyl) phthalate (DEHP), are prevalent in aquatic and terrestrial environments, primarily due to the gradual degradation of plastic polymers. In the analysis of 39 studies on water contamination during the period of 2022-2023, only 22 works could be extracted due to insufficient details on the numerical value of plasticizer concentrations. Similarly, soil and sediment contamination studies were fewer, with only 11 studies focusing on sediments. These studies reveal that high plasticizer concentrations, notably in industrial and urban areas, often exceed recommended environmental limits, posing risks to ecological integrity and human health through bioaccumulation. Bioaccumulation of these compounds in soil and water could negatively affect the microbial communities, nutrient cycling, and could destabilize the overall ecological integrity. Concerns about their direct uptake by plants and potential risks to human health and food safety are highlighted in this study due to the high concentrations exceeding the threshold values. The review evaluates current treatment technologies, including metal-organic frameworks, electrochemical systems, multi-walled carbon nanotubes, and microbial degradation, noting their potential and challenges related to cost and energy consumption. It underscores the need for improved detection protocols, cost-effective treatments, stricter regulations, public awareness, and collaborative research to mitigate the adverse impacts of plasticizers on ecosystems and human health.
Collapse
Affiliation(s)
- Danushika C Manatunga
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana, Homagama, 10206, Sri Lanka
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Madushika Sewwandi
- Ecosphere Resilience Research Center, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| | - Kalani Imalka Perera
- Ecosphere Resilience Research Center, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| | | | - Dinusha L Peramune
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana, Homagama, 10206, Sri Lanka
| | - Rohan S Dassanayake
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana, Homagama, 10206, Sri Lanka
| | - Sammani Ramanayaka
- Ecosphere Resilience Research Center, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YW, UK
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
- The Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
3
|
Hu J, Bao G, Pan X, Wang H, Xing N. Revealing the bioavailability and phytotoxicity of different particle size microplastics on diethyl phthalate (DEP) in rye (Secale cereale L.). JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135979. [PMID: 39368355 DOI: 10.1016/j.jhazmat.2024.135979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024]
Abstract
Understanding how widely distributed microplastics (MPs) and diethyl phthalate (DEP) interact with crops remains limited, despite their significant implications for human exposure. We used physiology, transcriptomics, adsorption kinetics, and computational chemistry to assess rye's molecular response to two sizes of MPs (200 nm and 5 µm) and DEP, both individually and in combination. Findings systematically highlight potential ecological risks from MPs and DEP, with ecotoxicity ranking as follows: CK (Control Check) < LMPs < SMPs < DEP < LMPs+DEP < SMPs+DEP. Fluorescence and scanning electron microscopy revealed SMP's translocation ability in rye and its potential to disrupt leaf cells. DEP increased the electronegativity on MPs, which enhanced their uptake by rye. DEP adsorption by MPs in hydroponics reduced DEP bioavailability in rye (18.17-46.91 %). Molecular docking studies showed DEP interacted with chlorophyll, superoxide dismutase, and glutathione S-transferases proteins' active sites. Transcriptomic analysis identified significant up-regulation of genes linked to mitogen-activated protein kinase signaling, phytohormones, and antioxidant systems in rye exposed to MPs and DEP, correlating with physiological changes. These findings deepen the understanding of how MPs can accumulate and translocate within rye, and their adsorption to DEP raises crop safety issues of greater environmental risk.
Collapse
Affiliation(s)
- Jinke Hu
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Guozhang Bao
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Xinyu Pan
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Huixin Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Ningning Xing
- Key Laboratory of Herbage and Endemic Crop Biotechnology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| |
Collapse
|
4
|
Xu X, Wang Y, Xu Y, Tan F. Characteristics, prediction, and risk assessment of phthalates, organophosphate esters, and polycyclic aromatic hydrocarbons in vegetables from plastic greenhouses of Northeast China. CHEMOSPHERE 2024; 368:143743. [PMID: 39547290 DOI: 10.1016/j.chemosphere.2024.143743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/17/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
We investigated the contaminations of phthalates (PAEs), organophosphate esters (OPEs), and polycyclic aromatic hydrocarbons (PAHs) in the vegetables and their corresponding soils from 26 plastic greenhouses of Northeast China. PAEs, OPEs, and PAHs in the edible portion of vegetables were in the range of 2620-21800, 115-852, and 32.4-602 ng/g, while the levels of these chemicals in the greenhouse soils were 5770-18800, 196-935, and 109-1600 ng/g, respectively. PAEs are the main organic pollutants in greenhouses, which were 1-2 orders of magnitude higher than that of OPEs and PAHs. Leafy vegetables showed the highest contamination level, which is ∼1-3 times that of root and fruit vegetables. Bioaccumulation factors (BAFs) of chemicals are significantly negatively correlated with their physicochemical properties, e.g., octanol-water partition coefficient and organic carbon partition coefficient. The partition-limited model can accurately predict the contamination level of greenhouse vegetables to a certain extent based on the chemical's concentration in the corresponding soil. We assessed the hazard quotients of target compounds through daily intake of greenhouse vegetables, and found a low risk for di(2-ethylhexyl) phthalate. This research emphasized the potential dietary exposure risks caused by greenhouse leafy vegetables, and proposed a method for evaluating the risk of greenhouse vegetables through soil monitoring.
Collapse
Affiliation(s)
- Xinhao Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Yue Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
5
|
Zhang Q, Liu Y, Li S, Li H, Gao M, Yao Y, Wang L, Wang Y. Traditional and Novel Organophosphate Esters in Plastic Greenhouse: Occurrence, Multimedia Migration, and Exposure Risk via Vegetable Consumption. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13929-13939. [PMID: 38978502 DOI: 10.1021/acs.est.4c02705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The migration and risk of organophosphate esters (OPEs) in agricultural air-soil-plant multimedia systems due to plastic film application remain unclear. This study investigates the multimedia distribution of traditional OPEs (TOPEs), novel OPEs (NOPEs), and their transformation products (POPEs) in plastic and solar greenhouses. The total concentration of OPE-associated contaminants in air and airborne particles ranged from 594 to 1560 pg/m3 and 443 to 15600 ng/g, respectively. Significant correlations between air OPE concentrations and those in polyolefin film (P < 0.01) indicate plastic film as the primary source. Contaminants were also found in soils (96.8-9630 ng/g) and vegetables (197-7540 ng/g). The primary migration pathway for NOPEs was particle dry deposition onto the soil and leaf, followed by plant accumulation. Leaf absorption was the main uptake pathway for TOPEs and POPEs, influenced by vegetable specific leaf surface area. Moreover, total exposure to OPE-associated contaminants via vegetable intake was assessed at 2250 ng/kg bw/day for adults and 2900 ng/kg bw/day for children, with an acceptable hazard index. However, a high ecological risk was identified for NOPE compounds (median risk quotient, 975). This study provides the first evidence of the multimedia distribution and potential threat posed by OPE-associated contaminants in agricultural greenhouses.
Collapse
Affiliation(s)
- Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yarui Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Siyuan Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hong Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Meng Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
6
|
Deng Y, Zhao H, Zhang X, Li X, Chi G. The dissipation of organophosphate esters mediated by ryegrass root exudate oxalic acid in soil: Analysis of enzymes activities, microorganism. CHEMOSPHERE 2024; 356:141896. [PMID: 38579949 DOI: 10.1016/j.chemosphere.2024.141896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Complex rhizoremediation is the main mechanism of phytoremediation in organic-contaminated soil. Low molecular weight organic acids (LMWOAs) in root exudates have been shown to increase the bioavailability of contaminants and are essential for promoting the dissipation of contaminants. The effects of root exudates on the dissipation of organophosphate esters (OPEs) in soil are unclear. Consequently, we studied the combined effects of root exudates, soil enzymes and microorganisms on OPEs (tri (1-chloro-2-propyl) phosphate (TCPP) and triphenyl phosphate (TPP)) dissipation through pot experiments. Oxalic acid (OA) was confirmed to be the main component of LMWOAs in root exudates of ryegrass. The existence of OA increased the dissipation rate of OPEs by 6.04%-25.50%. Catalase and dehydrogenase activities were firstly activated and then inhibited in soil. While, urease activity was activated and alkaline phosphatase activity was inhibited during the exposure period. More bacteria enrichment (e.g., Sphingomonas, Pseudomonas, Flavisolibacter, Pontibacter, Methylophilus and Massilia) improved the biodegradation of OPEs. In addition, the transformation paths of OPEs hydrolysis and methylation under the action of root exudates were observed. This study provided theoretical insights into reducing the pollution risk of OPEs in the soil.
Collapse
Affiliation(s)
- Yaxi Deng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China.
| | - Xiaonuo Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Xintong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Goujian Chi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| |
Collapse
|
7
|
Wang H, Qin Z, Bian R, Stubbings WA, Liu LY, Li F, Zhao X, Wu F, Wang S. Single injection by LC-ESI-MS/MS for simultaneous determination of organophosphate tri- and di-esters in plant tissue based on ultrasonic-assisted sequential extraction and single-step purification. Food Chem 2024; 437:137917. [PMID: 37944391 DOI: 10.1016/j.foodchem.2023.137917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/15/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
A novel methodology based on ultrasonic-assisted sequential extraction, dispersive-SPE purification, and single-injection on liquid chromatography-tandem mass spectrometry (LC-MS/MS) is proposed, for the first time, to simultaneously measure 14 tri-OPEs and 9 di-OPEs in plant tissues. The samples were successively ultrasonicated with a mixture of hexane:dichloromethane (1:1, v/v) and 8% acetic acid in acetonitrile for extracting tri- and di-OPEs purified with graphitized carbon black and quantitated on LC-MS/MS at the same time. The recoveries of targeted tri- and di-OPEs in the matrix spike ranged from 66% to 120% and 71% to 110% respectively. The proposed method was validated by processing eight types of common vegetables including spinach (Spinacia oleracea L.), lettuce (Lactuca sativa), carrot (Daucus carota var. sativa Hoffm.), sweet potato (Solanum tuberosum L.), cucumber (Cucumis sativus L.), tomato (Solanum lycopersicum L.), green beans (Phaseolus vulgaris), and cowpeas (Vigna unguiculata), with the recoveries of surrogates ranging from 84% to 98%.
Collapse
Affiliation(s)
- Haichao Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zifei Qin
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Renjie Bian
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - William A Stubbings
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Liang-Ying Liu
- School of Environment, Jinan University, Guangzhou, 511443, China.
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shaorui Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
8
|
Lu YS, Liu ZB, Xu YY, Sha JY, Qu D, Sun YS. Uptake and accumulation of di(2-ethylhexyl) phthalate (DEHP) in a soil-ginseng system and toxicological mechanisms on ginseng (Panax ginseng C.A. Meyer). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:170040. [PMID: 38215853 DOI: 10.1016/j.scitotenv.2024.170040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/14/2024]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is regarded as a priority environmental pollutant. This study explored the adsorption and accumulation of DEHP within the ginseng-soil system and the mechanism of DEHP toxicity to ginseng (Panax ginseng C.A. Meyer). Under exposure to 22.10 mg/kg DEHP in soil, DEHP mainly accumulated in ginseng leaves (20.28 mg/kg), stems (4.84 mg/kg) and roots (2.00 mg/kg) after 42 days. The oxidative damage, metabolism, protein express of ginseng were comprehensively measured and analyzed. The results revealed that MDA presented an activation trend in ginseng stems and leaves after 42 days of DEHP exposure, while the opposite trend was observed for POD. Levels of ginsenoside metabolites Rg2, Rg3, Rg5, Rd, Rf and CK decreased in the ginseng rhizosphere exudates under DEHP stress. Further investigations revealed that DEHP disrupts ginsenoside synthesis by inducing glycosyltransferase (GS) and squalene synthase (SS) protein interactions. Molecular docking indicated that DEHP could stably bind to GS and SS by intermolecular forces. These findings provide new information on the ecotoxicological effect of DEHP on ginseng root.
Collapse
Affiliation(s)
- Yu-Shun Lu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zheng-Bo Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Yan-Yang Xu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ji-Yue Sha
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Di Qu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Yin-Shi Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| |
Collapse
|
9
|
Li X, Yao Y, Zhao M, Yang J, Shi Y, Yu H, Cheng Z, Chen H, Wang Y, Wang L, Sun H. Nontarget Identification of Novel Organophosphorus Flame Retardants and Plasticizers in Rainfall Runoffs and Agricultural Soils around a Plastic Recycling Industrial Park. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12794-12805. [PMID: 37579047 DOI: 10.1021/acs.est.3c02156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Plastic recycling and reprocessing activities may release organophosphate ester (OPE) flame retardants and plasticizers into the surrounding environment. However, the relevant contamination profiles and impacts remain not well studied. This study investigated the occurrence of 28 OPEs and their metabolites (mOPEs) in rainfall runoffs and agricultural soils around one of the largest plastic recycling industrial parks in North China and identified novel organophosphorus compounds (NOPs) using high-resolution mass spectrometry-based nontarget analysis. Twenty and twenty-seven OPEs were detected in runoff water and soil samples, with total concentrations of 86.0-2491 ng/L and 2.53-199 ng/g dw, respectively. Thirteen NOPs were identified, of which eight were reported in the environment for the first time, including a chlorine-containing OPE, an organophosphorus heterocycle, a phosphite, three novel OPE metabolites, and two oligomers. Triphenylphosphine oxide and diphenylphosphinic acid occurred ubiquitously in runoffs and soils, with concentrations up to 390 ng/L and 40.2 ng/g dw, respectively. The downwind areas of the industrial park showed elevated levels of OPEs and NOPs. The contribution of hydroxylated mOPEs was higher in soils than in runoffs. These findings suggest that plastic recycling and reprocessing activities are significant sources of OPEs and NOPs and that biotransformation may further increase the ecological and human exposure risk.
Collapse
Affiliation(s)
- Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Maosen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ji Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yumeng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
10
|
Lu R, Cao X, Zheng X, Zeng Y, Jiang Y, Mai B. Biomagnification and elimination effects of persistent organic pollutants in a typical wetland food web from South China. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131733. [PMID: 37269563 DOI: 10.1016/j.jhazmat.2023.131733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/15/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
This study investigated the quantitative sources of persistent organic pollutants (POPs), their biomagnification factors, and their effect on POP biomagnification in a typical waterbird (common kingfisher, Alcedo atthis) food web in South China. The median concentrations of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in kingfishers were 32,500 ng/g lw and 130 ng/g lw, respectively. The congener profiles of PBDEs and PCBs showed significant temporal changes because of the restriction time points and biomagnification potential of different contaminants. The concentrations of most bioaccumulative POPs, such as CBs 138 and 180 and BDEs 153 and 154, decreased at lower rates than those of other POPs. Pelagic fish (metzia lineata) and benthic fish (common carp) were the primary prey of kingfishers, as indicated by quantitative fatty acid signature analysis (QFASA) results. Pelagic and benthic prey species were the primary sources of low and high hydrophobic contaminants for kingfishers, respectively. Biomagnification factors (BMFs) and trophic magnification factors (TMFs) had parabolic relationships with log KOW, with peak values of approximately 7. Significant negative correlations were found between the whole-body elimination rates of POPs in waterbirds and the log-transformed TMFs and BMFs, indicating that the strong metabolism of waterbirds could potentially affect POP biomagnification.
Collapse
Affiliation(s)
- Ruifeng Lu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xingpei Cao
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaobo Zheng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yiye Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
11
|
Yu Y, Huang J, Jin L, Yu M, Yu X, Zhu X, Sun J, Zhu L. Translocation and metabolism of tricresyl phosphate in rice and microbiome system: Isomer-specific processes and overlooked metabolites. ENVIRONMENT INTERNATIONAL 2023; 172:107793. [PMID: 36739853 DOI: 10.1016/j.envint.2023.107793] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Tricresyl phosphate (TCP) is extensively used organophosphorus flame retardants and plasticizers that posed risks to organisms and human beings. In this study, the translocation and biotransformation behavior of isomers tri-p-cresyl phosphate (TpCP), tri-m-cresyl phosphate (TmCP), and tri-o-cresyl phosphate (ToCP) in rice and rhizosphere microbiome was explored by hydroponic exposure. TpCP and TmCP were found more liable to be translocated acropetally, compared with ToCP, although they have same molecular weight and similar Kow. Rhizosphere microbiome named microbial consortium GY could reduce the uptake of TpCP, TmCP, and ToCP in rice tissues, and promote rice growth. New metabolites were successfully identified in rice and microbiome, including hydrolysis, hydroxylated, methylated, demethylated, methoxylated, and glucuronide- products. The methylation, demethylation, methoxylation, and glycosylation pathways of TCP isomers were observed for the first time in organisms. What is more important is that the demethylation of TCPs could be an important and overlooked source of triphenyl phosphate (TPHP), which broke the traditional understanding of the only manmade source of toxic TPHP in the environment. Active members of the microbial consortium GY during degradation were revealed and metagenomic analysis indicated that most of active populations contained TCP-degrading genes. It is noteworthy that the strains and function genes in microbial consortium GY that responsible for TCP isomers' transformation were different. These results can improve our understanding of the translocation and transformation of organic pollutant isomers in plants and rhizosphere microbiome.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Ling Jin
- Department of Civil and Environmental Engineering and Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong
| | - Miao Yu
- The Jackson Laboratory For Genomic Medicine 10 Discovery Dr, Farmington, CT 06032, USA
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xifen Zhu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China.
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
12
|
Long S, Hamilton PB, Fu B, Xu J, Han L, Suo X, Lai Y, Shen G, Xu F, Li B. Bioaccumulation and emission of organophosphate esters in plants affecting the atmosphere's phosphorus cycle. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120803. [PMID: 36503012 DOI: 10.1016/j.envpol.2022.120803] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The imbalance of atmospheric, terrestrial and aquatic phosphorus budgets remains a research conundrum and global concern. In this work, the uptake, distribution, bioaccumulation and emission of organophosphate esters (OPEs) by clove trees (Syzygium aromaticum), lemon trees (Citrus limon) and cape jasmine trees (Gardenia jasminoides var. fortuniana) was investigated as conduits for phosphorus transfer or sinks and sources. The objective was to assess the role OPEs in soils play as atmospheric phosphorus sources through plant bioaccumulation and emission. Results demonstrated OPEs in experimental soil plots ranging from 0.01 to 81.0 ng g-1 dry weight, were absorbed and transported through plants to the atmosphere. The total emission of OPEs varied greatly from 0.2 to 588.9 pg g-1 L-1 h-1, with a mean of 47.6 pg g-1 L-1 h-1. There was a negative linear relationship between the concentrations of total phosphorus and four OPEs, tri-iso-butyl phosphate, tri-n-butyl phosphate, tris (2-chloroisopropyl) phosphate and tripentyl phosphate. Trimethyl phosphate levels were positively correlated with total nitrogen, and the concentrations of tri-iso-butyl phosphate, tri-n-butyl phosphate, tris (2-chloroisopropyl) phosphate and tripentyl phosphate decreased along with available potassium in leaves after 72 h. There was a significantly positive linear relationship between higher emission concentrations of OPEs and the emission factor of OPEs concentration (F = 4.2, P = 0.002), with lower emissions of OPEs and the bioaccumulation of OPEs in leaves (F = 4.8, P = 0.004). OPEs releases to the atmosphere were enriched in aerosols, and participate in atmospheric chemical reactions like photolysis, thereby affecting the phosphorus balance and cycling in the atmosphere.
Collapse
Affiliation(s)
- Shengxing Long
- College of Urban and Environmental Sciences, Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, Peking University, Beijing, 100871, China
| | - Paul B Hamilton
- Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada
| | - Bo Fu
- College of Urban and Environmental Sciences, Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, Peking University, Beijing, 100871, China
| | - Jing Xu
- College of Urban and Environmental Sciences, Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, Peking University, Beijing, 100871, China
| | - Luchao Han
- College of Urban and Environmental Sciences, Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, Peking University, Beijing, 100871, China
| | - Xinhao Suo
- College of Urban and Environmental Sciences, Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, Peking University, Beijing, 100871, China
| | - Yuqin Lai
- College of Urban and Environmental Sciences, Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, Peking University, Beijing, 100871, China
| | - Guofeng Shen
- College of Urban and Environmental Sciences, Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, Peking University, Beijing, 100871, China
| | - Fuliu Xu
- College of Urban and Environmental Sciences, Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, Peking University, Beijing, 100871, China
| | - Bengang Li
- College of Urban and Environmental Sciences, Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, Peking University, Beijing, 100871, China; Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China.
| |
Collapse
|