1
|
Hu C, Guo W, Zhen S, Li Y, Huang C, Zhan L. Bimetallic Ag/Fe-MOG derived flake-like Ag 2O/Fe 2O 3 p-n heterojunction for efficient photodegradation organic pollutants within a wide pH range. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121686. [PMID: 38971057 DOI: 10.1016/j.jenvman.2024.121686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
In this paper, we reported a facile and clean strategy to prepare the flake-like Ag2O/Fe2O3 bimetallic p-n heterojunction composites for photodegradation organic pollutants. The surface morphology, crystal structure, chemical composition and optical properties of Ag2O/Fe2O3 were characterized by SEM, high-resolution TEM images with EDX spectra, XRD, XPS, FT-IR and UV-vis DRS spectra respectively. The formation of Ag2O/Fe2O3 p-n heterojunction facilitated the interfacial transfer of electrons as well as the separation of charge carries. Hence, the as-synthesized Ag2O/Fe2O3-3 composites exhibited ultra-high photocatalytic activity. Under the experimental conditions of catalyst dosage of 0.4 mg mL-1 and irradiation time of 60 min, the degradation conversion rate of rhodamine B reached 96.1 %, which was 5.0 and 2.8 times of pure phase Ag2O and Fe2O3, respectively. Meanwhile, the degradation performance of Ag2O/Fe2O3-3 was not limited by pH, and it can achieve high degradation efficiency under 3-11. In addition, Ag2O/Fe2O3-3 also showed superb degradation ability for other common anionic dyes, cationic dyes and antibiotics. XPS and FT-IR spectra showed that Ag2O/Fe2O3-3 retained a carbon skeleton that facilitated electron transport and light absorption conversion. And the analyses of quenching experiment and EPR demonstrated •O2-, •OH and h+ were crucial reactive oxidant species contributing to the rapid organic pollutant degradation. This work provides new insights into obtaining p-n photocatalysts heterojunction with excellent catalytic activity for removing organic pollutants from wastewater.
Collapse
Affiliation(s)
- Congyi Hu
- Key Laboratory of Luminescence and Real-Time Analysis System, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Wan Guo
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Shujun Zhen
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yuanfang Li
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Chengzhi Huang
- Key Laboratory of Luminescence and Real-Time Analysis System, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Lei Zhan
- Key Laboratory of Luminescence and Real-Time Analysis System, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
2
|
Quiñones C, Posada M, Hormiga A, Peña J, Diaz-Uribe C, Vallejo W, Muñoz-Acevedo A, Roa V, Schott E, Zarate X. Antimicrobial Activity against Fusarium oxysporum f. sp. dianthi of TiO 2/ZnO Thin Films under UV Irradiation: Experimental and Theoretical Study. ACS OMEGA 2024; 9:31546-31555. [PMID: 39072138 PMCID: PMC11270707 DOI: 10.1021/acsomega.4c01287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/17/2024] [Accepted: 04/25/2024] [Indexed: 07/30/2024]
Abstract
We deposited bare TiO2 and TiO2/ZnO thin films to study their antimicrobial capacity against Fusarium oxysporum f. sp. dianthi. The deposit of TiO2 was performed by spin coating and the ZnO thin films were deposited onto the TiO2 surface by plasma-assisted reactive evaporation technique. The characterization of the compounds was carried out by scanning electron microscopy (SEM) and powder X-ray diffraction techniques. Furthermore, density functional theory (DFT) and time-dependent DFT (TDDFT) calculations were performed to support the observed experimental results. Thus, the removal of methylene blue (MB) by adsorption and posterior photocatalytic degradation was studied. Adsorption kinetic results showed that TiO2/ZnO thin films were more efficient in MB removal than bare TiO2 thin films, and the pseudo-second-order model was suitable to describe the experimental results for TiO2/ZnO (q e = 12.9 mg/g; k 2 = 0.14 g/mg/min) and TiO2 thin films (q e = 12.0 mg/g; k 2 = 0.13 g/mg/min). Photocatalytic results under UV irradiation showed that TiO2 thin films reached 10.9% of MB photodegradation (k = 1.0 × 10-3 min-1), whereas TiO2/ZnO thin films reached 20.6% of MB photodegradation (k = 3.9 × 10-3 min-1). Both thin films reduced the photocatalytic efficiency by less than 3% after 4 photocatalytic tests. DFT study showed that the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy gap decreases for the mixed nanoparticle system, showing its increased reactivity. Furthermore, the chemical hardness shows a lower value for the mixed system, whereas the electrophilicity index shows the biggest value, supporting the larger reactivity for the mixed nanoparticle system. Finally, the antimicrobial activity against F. oxysporum f. sp. dianthi showed that bare TiO2 reached a growth reduction of 68% while TiO2/ZnO reached a growth reduction of 90% after 250 min of UV irradiation.
Collapse
Affiliation(s)
- Cesar Quiñones
- Facultad
de ingeniería, Programa de ingeniería Química, Universidad de La Salle, Bogotá 111711, Colombia
| | - Martha Posada
- Grupo
de Investigación Ceparium, Universidad
Colegio Mayor de Cundinamarca, Bogotá 111321, Colombia
| | - Angie Hormiga
- Grupo
de Investigación Ceparium, Universidad
Colegio Mayor de Cundinamarca, Bogotá 111321, Colombia
| | - Julian Peña
- Escuela
de negocios, Universidad del Caribe (UNICARIBE), Santo Domingo 11105, República Dominicana
| | - Carlos Diaz-Uribe
- Grupo
de Fotoquímica y Fotobiología, Universidad del Atlántico, Puerto Colombia 81007, Colombia
| | - William Vallejo
- Grupo
de Fotoquímica y Fotobiología, Universidad del Atlántico, Puerto Colombia 81007, Colombia
| | - Amner Muñoz-Acevedo
- Grupo
de Investigación en Química y Biología, Universidad del Norte, Puerto Colombia 81007, Colombia
| | - Vanesa Roa
- Departamento
de Química Inorgánica, Facultad de Química y
Farmacia, Centro de Energía UC, Centro de Investigación
en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860 Santiago, Chile
| | - Eduardo Schott
- Departamento
de Química Inorgánica, Facultad de Química y
Farmacia, Centro de Energía UC, Centro de Investigación
en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860 Santiago, Chile
| | - Ximena Zarate
- Instituto
de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago 7500912, Chile
| |
Collapse
|
3
|
Reza Amani-Ghadim A, Dadkhah S, Abdouss M, Khataee A, Sattari S, Fattahi M. Development of a novel Z-scheme Co xNi 1-xTiO 3/CdS (x = 0.5) photocatalyst for the efficient degradation of organic pollutants via a visible-light-driven photocatalytic process. J Colloid Interface Sci 2024; 663:1035-1051. [PMID: 38452545 DOI: 10.1016/j.jcis.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Herein, for the first time, we reported the synthesis of a novel Z-scheme CoxNi1-xTiO3/CdS (x = 0.5) heterojunction photocatalyst and the investigation of its visible-light-driven photocatalytic performance toward degradation of methylene blue (MB). The developed photocatalyst was structurally characterized by applying X-Ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), differential reflectance spectroscopy (DRS), and photoluminescence (PL) techniques. The results indicated the formation of a highly porous structure with improved visible light adsorption capacity, favorable for the catalytic activity. At an optimum condition of 10 mg/L of MB and 300 mg/L of catalyst, the ternary photocatalyst demonstrated a MB removal efficiency of 99 % after 75 min of the treatment process. The radical trapping experiments unveiled that hydroxyl and superoxide radicals were two main reactive species formed under visible light, while the valance holes possessed an insignificant role. The synergetic impact of the CoxNi1-xTiO3 (x = 0.5) and CdS on the photodegradation of MB over the as-prepared CoxNi1-xTiO3/CdS (x = 0.5) photocatalyst through Z-scheme photocatalysis was indicated by the results of the mechanism studies. The percentage impact of the treatment time, MB concentration, the ratio of CoxNi1-xTiO3/CdS (x = 0.5), and the dosage of catalyst using analysis of the CCD modeling was obtained as 47.04, 16.67, 7.22 and 0.87 %, respectively. Furthermore, the as-synthesized photocatalyst possessed high recyclability and photostability with only a 3 % decline in activity after four repetitive cycles.
Collapse
Affiliation(s)
- Ali Reza Amani-Ghadim
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University (ASMU), Tabriz 53751-71379, Iran; New Technologies in the Environment Research Center, Azarbaijan Shahid Madani University (ASMU), Tabriz 53751-71379, Iran.
| | - Shadi Dadkhah
- Department of Chemistry, Amirkabir University of Technology, 15875-4413 Tehran, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, 15875-4413 Tehran, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey
| | - Shabnam Sattari
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University (ASMU), Tabriz 53751-71379, Iran
| | - Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam.
| |
Collapse
|
4
|
Zhang SQ, Xu HY, Li B, Xu Y, Komarneni S. Constructing a Z-Scheme Co 3O 4/BiOBr Heterojunction to Enhance Photocatalytic Peroxydisulfate Oxidation of High-Concentration Rhodamine B: Mechanism, Degradation Pathways, and Toxicological Evaluations. Inorg Chem 2024; 63:4447-4460. [PMID: 38385361 DOI: 10.1021/acs.inorgchem.4c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Photocatalytic coupling technologies have emerged as popular strategies to increase the treatment efficiency of dye-containing wastewater. Herein, the Z-scheme Co3O4/BiOBr heterojunction (Z-CBH) was constructed and developed as a photocatalytic peroxydisulfate (PDS) activator for the degradation of high-concentration Rhodamine B (RhB). Multiple testing techniques were employed to confirm the formation of Z-CBHs. When 0.1 g·L-1 of Z-CBH20 and 1.0 mmol·L-1 of PDS were added simultaneously under simulated sunlight irradiation, the RhB degradation efficiency could approach 91.3%. Its reaction rate constant (0.01231 min-1) was much beyond the sum of those in the Z-CBH20/light system (0.00436 min-1) and the PDS/light system (0.0062 min-1). h+, •OH, •O2-, SO4•-, and 1O2 were detected as the dominant reactive species for RhB degradation. The potential mechanism of photocatalytic PDS oxidation was proposed. The possible intermediates were determined by high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry assisted with density functional theory and Fukui theory. The possible degradation pathways of RhB degradation were put forward. The toxicological properties of RhB and its intermediates were evaluated by quantitative structure-activity relationship prediction. This work will not only provide a reference for developing photocatalytic persulfate activators but also gain an insight into the degradation pathways of RhB and the toxicity of its intermediates.
Collapse
Affiliation(s)
- Si-Qun Zhang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Huan-Yan Xu
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Bo Li
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Yan Xu
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Sridhar Komarneni
- Materials Research Institute and Department of Ecosystem Science and Management, 204 Energy and the Environment Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
5
|
Rezaei M, Nezamzadeh-Ejhieh A, Massah AR. A Comprehensive Review on the Boosted Effects of Anion Vacancy in the Heterogeneous Photocatalytic Degradation, Part II: Focus on Oxygen Vacancy. ACS OMEGA 2024; 9:6093-6127. [PMID: 38371849 PMCID: PMC10870278 DOI: 10.1021/acsomega.3c07560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/20/2024]
Abstract
Environmental problems, including the increasingly polluted water and the energy crisis, have led to a need to propose novel strategies/methodologies to contribute to sustainable progress and enhance human well-being. For these goals, heterogeneous semiconducting-based photocatalysis is introduced as a green, eco-friendly, cost-effective, and effective strategy. The introduction of anion vacancies in semiconductors has been well-known as an effective strategy for considerably enhancing the photocatalytic activity of such photocatalytic systems, giving them the advantages of promoting light harvesting, facilitating photogenerated electron-hole pair separation, optimizing the electronic structure, and enhancing the yield of reactive radicals. This Review will introduce the effects of anion vacancy-dominated photodegradation systems. Then, their mechanism will illustrate how an anion vacancy changes the photodegradation pathway to enhance the degradation efficiency toward pollutants and the overall photocatalytic performance. Specifically, the vacancy defect types and the methods of tailoring vacancies will be briefly illustrated, and this part of the Review will focus on the oxygen vacancy (OV) and its recent advances. The challenges and development issues for engineered vacancy defects in photocatalysts will also be discussed for practical applications and to provide a promising research direction. Finally, some prospects for this emerging field will be proposed and suggested. All permission numbers for adopted figures from the literature are summarized in a separate file for the Editor.
Collapse
Affiliation(s)
- Mahdieh Rezaei
- Department
of Chemistry, Shahreza Branch, Islamic Azad
University, P.O. Box 311-86145, Shahreza, Isfahan 86139-74183, Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department
of Chemistry, Shahreza Branch, Islamic Azad
University, P.O. Box 311-86145, Shahreza, Isfahan 86139-74183, Iran
- Department
of Chemistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Isfahan 81551-39998, Iran
| | - Ahmad Reza Massah
- Department
of Chemistry, Shahreza Branch, Islamic Azad
University, P.O. Box 311-86145, Shahreza, Isfahan 86139-74183, Iran
- Department
of Chemistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Isfahan 81551-39998, Iran
| |
Collapse
|
6
|
Subhiksha V, Okla MK, Sivaranjani PR, Abdel-Maksoud MA, Saleh IA, Abu-Harirah HA, Khan SS. Congregating Ag into γ-Bi 2O 3 coupled with CoFe 2O 4 for enhanced visible light photocatalytic degradation of ciprofloxacin, Cr(VI) reduction and genotoxicity studies. CHEMOSPHERE 2023; 342:140181. [PMID: 37716560 DOI: 10.1016/j.chemosphere.2023.140181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
The work attempts to construct a highly effective γ-Bi2O3/CoFe2O4/Ag visible active photocatalyst for the enhanced degradation of ciprofloxacin (CIP) and Cr(VI) reduction. γ-Bi2O3/CoFe2O4/Ag photocatalyst was prepared by simple solid phase and co-precipitation methods. The nanosphere shaped CoFe2O4 photocatalyst are embedded on top of γ-Bi2O3 nanotriangle. The addition of Ag into γ-Bi2O3/CoFe2O4 heterojunction primitively facilitates the photocatalytic activity in higher rate. The quantitative analysis of photocatalyst possesses to have lower e-/h+ recombination rate compared to its counterparts. The prepared γ-Bi2O3/CoFe2O4/Ag photocatalyst showed 96.6% degradation of CIP in 220 min and 99.2% reduction of Cr(VI) in 120 min. Additionally, γ-Bi2O3/CoFe2O4/Ag showed outstanding recyclability and long-term stability with a degradation efficiency of 96.5% even after six cycles. The intermediate products formed were identified and the degradation pathway was elucidated by gas chromatography-mass spectrometry analysis. Total organic carbon measurement was carried over to assess the efficiency of complete degradation and the removal percentage was found to be 98%. The end product toxicity study towards bacteria was proven to have less toxicity level when compared to parent compound. Lastly, the genotoxicity of γ-Bi2O3/CoFe2O4/Ag photocatalyst was tested in Allium cepa and the results confirmed to have no cause of toxicity impacts. Overall, the work not only tends to provide a highly visible active γ-Bi2O3/CoFe2O4/Ag photocatalyst, but also attributes to have no further negative imprints in the environment.
Collapse
Affiliation(s)
- V Subhiksha
- Department of Oral Medicine and Radiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600077, Tamil Nadu, India
| | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - P R Sivaranjani
- School of Engineering, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | | - Hashem A Abu-Harirah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa, 13110, Jordan
| | - S Sudheer Khan
- Department of Oral Medicine and Radiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
7
|
Wu H, Quan Y, Liu M, Tian X, Ren C, Wang Z. Synthesis of AgBr/Ti 3C 2@TiO 2 ternary composite for photocatalytic dehydrogenation of 1,4-dihydropyridine and photocatalytic degradation of tetracycline hydrochloride. RSC Adv 2023; 13:21754-21768. [PMID: 37476041 PMCID: PMC10354501 DOI: 10.1039/d3ra02164e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023] Open
Abstract
In this work, AgBr/Ti3C2@TiO2 ternary composite photocatalyst was prepared by a solvothermal and precipitation method with the aims of introducing Ti3C2 as a cocatalyst and TiO2 as a compositing semiconductor. The crystal structure, morphology, elemental state, functional groups and photoelectrochemical properties were studied by XRD, SEM, TEM, XPS, FI-IR and EIS. The photocatalytic performances of the composites were investigated by the photodehydrogenation of diethyl 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate (1,4-DHP) and the photodegradation of tetracycline hydrochloride (TCH) under visible light irradiation (λ > 400 nm). The AgBr/Ti3C2@TiO2 composite photocatalyst showed enhanced photocatalytic performance in both photocatalytic reactions. The photocatalytic activity of the composite photocatalyst is dependent on the proportional content of Ti3C2@TiO2. With optimized Ti3C2@TiO2 proportion, the photocatalytic ability of the AgBr/Ti3C2@TiO2 composite was 24.5 times as high as that of Ti3C2@TiO2 for photodehydrogenation of 1,4-DHP and 1.9 times as high as that of pure AgBr for photodegradation of TCH. The enhanced photocatalytic performance of the AgBr/Ti3C2@TiO2 composite should be due to the formation of a p-n heterojunction structure between AgBr and Ti3C2@TiO2 and the excellent electronic properties of Ti3C2, which enhanced the visible light absorption capacity, lowered the internal resistance, speeded up the charge transfer and reduced the recombination efficiency of photo-generated carriers. Mechanism studies showed that superoxide free radical (˙O2-) was the main active species. In addition, the composite photocatalyst also displayed good stability, indicating its reutilization in practical application.
Collapse
Affiliation(s)
- Hanliu Wu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University Nanchong 637002 Sichuan China +86 817-2568081 +86 817-2445233
| | - Yan Quan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University Nanchong 637002 Sichuan China +86 817-2568081 +86 817-2445233
| | - Meiling Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University Nanchong 637002 Sichuan China +86 817-2568081 +86 817-2445233
| | - Xuemei Tian
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University Nanchong 637002 Sichuan China +86 817-2568081 +86 817-2445233
| | - Chunguang Ren
- College of Life Sciences, Yantai University Yantai 264005 China
| | - Zhonghua Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University Nanchong 637002 Sichuan China +86 817-2568081 +86 817-2445233
| |
Collapse
|
8
|
Liu X, Ren A, Liu A, Jiang X, Zhang L. Simultaneous photocatalytic tetracycline oxidation and Cr(VI) reduction by a 0D/3D hierarchical Bi 2WO 6@CoO Z-scheme heterostructure: In situ interfacial engineering and charge regulation mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118134. [PMID: 37196619 DOI: 10.1016/j.jenvman.2023.118134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
Constructing visible-light driven semiconductor heterojunction with high redox bifunctional characteristics is a promising approach to deal with the increasingly serious environmental pollution problems, especially the coexistence of organic/heavy metal pollutants. Herein, a simple in-situ interfacial engineering strategy for the fabrication of 0D/3D hierarchical Bi2WO6@CoO (BWO) heterojunction with an intimate contact interface was successfully developed. The superior photocatalytic property was reflected not only in individual tetracycline hydrochloride (TCH) oxidation or Cr(VI) reduction, but also in their simultaneous redox reaction, which could be predominantly attributed to the outstanding light-harvesting, high carrier separation efficiency and enough redox potentials. In the simultaneous redox system, TCH acted as a hole-scavenger for Cr(VI) reduction, replacing the additional reagent. Interestingly, superoxide radical (·O2-) played the role as oxidants in TCH oxidation but as electron transfer media in Cr(VI) reduction. On account of the interlaced energy band and tight interfacial contact, a direct Z-scheme charge transfer model was established, which was verified by the active species trapping experiments, spectroscopy, and electrochemical tests. This work provided a promising strategy for the design/fabrication of highly efficient direct Z-scheme photocatalysts in environmental remediation.
Collapse
Affiliation(s)
- Xueyan Liu
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Aina Ren
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Anqi Liu
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Xiaoqing Jiang
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Lei Zhang
- College of Chemistry, Liaoning University, Shenyang, 110036, China.
| |
Collapse
|
9
|
Kuila SK, Guchhait SK, Mandal D, Kumbhakar P, Chandra A, Tiwary CS, Kundu TK. Dimensionality effects of g-C 3N 4 from wettability to solar light assisted self-cleaning and electrocatalytic oxygen evolution reaction. CHEMOSPHERE 2023; 333:138951. [PMID: 37196791 DOI: 10.1016/j.chemosphere.2023.138951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/23/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Unique interfacial properties of 2D materials make them more functional than their bulk counterparts in a catalytic application. In the present study, bulk and 2D graphitic carbon nitride nanosheet (bulk g-C3N4 and 2D-g-C3N4 NS) coated cotton fabrics and nickel foam electrode interfaces have been applied for solar light-driven self-cleaning of methyl orange (MO) dye and electrocatalytic oxygen evolution reaction (OER), respectively. Compared to bulk, 2D-g-C3N4 coated interfaces show higher surface roughness (1.094 > 0.803) and enhanced hydrophilicity (θ ∼ 32° < 62° for cotton fabric and θ ∼ 25° < 54° for Ni foam substrate) due to oxygen defect induction as confirmed from morphological (HR-TEM and AFM) and interfacial (XPS) characterizations. The self-remediation efficiencies for blank and bulk/2D-g-C3N4 coated cotton fabrics are estimated through colorimetric absorbance and average intensity changes. The self-cleaning efficiency for 2D-g-C3N4 NS coated cotton fabric is 87%, whereas the blank and bulk-coated fabric show 31% and 52% efficiency. Liquid Chromatography-Mass Spectrometry (LC-MS) analysis determines the reaction intermediates for MO cleaning. 2D-g-C3N4 shows lower overpotential (108 mV) and onset potential (1.30 V) vs. RHE for 10 mA cm-2 OER current density in 0.1 M KOH. Also, the decreased charge transfer resistance (RCT = 12 Ω) and lower Tafel's slope (24 mV dec-1) of 2D-g-C3N4 make it the most efficient OER catalyst over bulk-g-C3N4 and state-of-the-art material RuO2. The pseudocapacitance behavior of OER governs the kinetics of electrode-electrolyte interaction through the electrical double layer (EDL) mechanism. The 2D electrocatalyst demonstrates long-term stability (retention ∼94%) and efficacy compared to commercial electrocatalysts.
Collapse
Affiliation(s)
- Saikat Kumar Kuila
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.
| | | | - Debabrata Mandal
- School of Nanoscience and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Partha Kumbhakar
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Amreesh Chandra
- School of Nanoscience and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India; Department of Physics, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Chandra Sekhar Tiwary
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Tarun Kumar Kundu
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
10
|
Kamble GS, Natarajan TS, Patil SS, Thomas M, Chougale RK, Sanadi PD, Siddharth US, Ling YC. BiVO 4 As a Sustainable and Emerging Photocatalyst: Synthesis Methodologies, Engineering Properties, and Its Volatile Organic Compounds Degradation Efficiency. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091528. [PMID: 37177074 PMCID: PMC10180559 DOI: 10.3390/nano13091528] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
Bismuth vanadate (BiVO4) is one of the best bismuth-based semiconducting materials because of its narrow band gap energy, good visible light absorption, unique physical and chemical characteristics, and non-toxic nature. In addition, BiVO4 with different morphologies has been synthesized and exhibited excellent visible light photocatalytic efficiency in the degradation of various organic pollutants, including volatile organic compounds (VOCs). Nevertheless, the commercial scale utilization of BiVO4 is significantly limited because of the poor separation (faster recombination rate) and transport ability of photogenerated electron-hole pairs. So, engineering/modifications of BiVO4 materials are performed to enhance their structural, electronic, and morphological properties. Thus, this review article aims to provide a critical overview of advanced oxidation processes (AOPs), various semiconducting nanomaterials, BiVO4 synthesis methodologies, engineering of BiVO4 properties through making binary and ternary nanocomposites, and coupling with metals/non-metals and metal nanoparticles and the development of Z-scheme type nanocomposites, etc., and their visible light photocatalytic efficiency in VOCs degradation. In addition, future challenges and the way forward for improving the commercial-scale application of BiVO4-based semiconducting nanomaterials are also discussed. Thus, we hope that this review is a valuable resource for designing BiVO4-based nanocomposites with superior visible-light-driven photocatalytic efficiency in VOCs degradation.
Collapse
Affiliation(s)
- Ganesh S Kamble
- Department of Engineering Chemistry, Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur Affiliated Shivaji University Kolhapur Maharashtra, Kolhapur 416004, Maharashtra, India
| | - Thillai Sivakumar Natarajan
- Environmental Science Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Chennai 600020, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 600113, Uttar Pradesh, India
| | - Santosh S Patil
- Department of Applied Mechanics, ECTO Group, FEMTO-ST Institute, 24, Rue de l'Epitaph, 25000 Besançon, France
| | - Molly Thomas
- School of Studies in Chemistry & Research Centre, Maharaja Chhatrasal Bundelkhand University, Chhatarpur 471001, Madhya Pradesh, India
| | - Rajvardhan K Chougale
- Department of Engineering Chemistry, Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur Affiliated Shivaji University Kolhapur Maharashtra, Kolhapur 416004, Maharashtra, India
| | - Prashant D Sanadi
- Department of Engineering Chemistry, Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur Affiliated Shivaji University Kolhapur Maharashtra, Kolhapur 416004, Maharashtra, India
| | - Umesh S Siddharth
- Department of Basic Sciences and Humanities, Sharad Institute of Technology College of Engineering Yadrav (Ichalkaranji), Ichalkaranji 416115, Maharashtra, India
| | - Yong-Chein Ling
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
11
|
Huang CW, Zhou SR, Hsiao WC. Multifunctional TiO2/MIL-100(Fe) to conduct adsorption, photocatalytic, and heterogeneous photo-Fenton reactions for removing organic dyes. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
12
|
Le-Duy N, Hoang LAT, Nguyen TD, Lee T. Pd nanoparticles decorated BiVO 4 pine architectures for photocatalytic degradation of sulfamethoxazole. CHEMOSPHERE 2023; 321:138118. [PMID: 36775029 DOI: 10.1016/j.chemosphere.2023.138118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Sulfamethoxazole (SMX) has been extensively detected in wastewater treatment plant effluents and surface water. Because of its potential risks to ecology and health, treatment for eliminating SMX is urgently required. In this study, we report the application of Pd nanoparticles decorated on BiVO4 pine architecture for the photocatalytic degradation of SMX. The results showed that the barer BiVO4 and Pd-BiVO4 eliminated SMX under visible-light irradiation. After 210 min of irradiation, 98.8% of SMX was substantially eliminated by Pd-BiVO4, whereas bare BiVO4 can degraded approximately 36.3% of SMX. Pd-BiVO4 also exhibited a high mineralization rate (84% of total organic carbon (TOC) removal) compared to bare BiVO4 (51% of TOC removal). Through three-dimensional excitation-emission matrix fluorescence spectra, SMX with high fluorescence intensity can be degraded to non-fluorescence intermediate products, further confirming the high mineralization of SMX over Pd-BiVO4 catalyst. Well-dispersed Pd nanoparticles on the {040} facet of BiVO4 pine architecture can support the recombination of photogenerated charge carriers because of the formation of the Schottky junction at the Pd-BiVO4 interface. Besides, the active species trapping tests indicated that •O2- and h+ radicals dominate SMX photodegradation over Pd-BiVO4. The main degradation intermediates of SMX in the reaction solution was also identified through ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry analysis. This investigation can provide insight into designing metallic/semiconductor junctions for antibiotic elimination in water media.
Collapse
Affiliation(s)
- Nhat Le-Duy
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University, 45Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Lan-Anh T Hoang
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University, 45Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Trinh Duy Nguyen
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University, 45Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Viet Nam.
| | - Taeyoon Lee
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University, 45Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea.
| |
Collapse
|
13
|
Pahuja M, De I, Ahmed Siddiqui S, Das S, Afshan M, Alam K, Riyajuddin S, Rani S, Ghosh R, Rani D, Gill K, Singh M, Ghosh K. Seamless Architecture of Porous Carbon Matrix Decorated with Ta2O5 Nanostructure-based Recyclable Photocatalytic Cartridge for Toxicity Remediation of Industrial Dye Effluents. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|