1
|
Han B, Tian D, Li X, Liu S, Tian F, Liu D, Wang S, Zhao K. Multiomics Analyses Provide New Insight into Genetic Variation of Reproductive Adaptability in Tibetan Sheep. Mol Biol Evol 2024; 41:msae058. [PMID: 38552245 PMCID: PMC10980521 DOI: 10.1093/molbev/msae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/13/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
Domestication and artificial selection during production-oriented breeding have greatly shaped the level of genomic variability in sheep. However, the genetic variation associated with increased reproduction remains elusive. Here, two groups of samples from consecutively monotocous and polytocous sheep were collected for genome-wide association, transcriptomic, proteomic, and metabolomic analyses to explore the genetic variation in fecundity in Tibetan sheep. Genome-wide association study revealed strong associations between BMPR1B (p.Q249R) and litter size, as well as between PAPPA and lambing interval; these findings were validated in 1,130 individuals. Furthermore, we constructed the first single-cell atlas of Tibetan sheep ovary tissues and identified a specific mural granulosa cell subtype with PAPPA-specific expression and differential expression of BMPR1B between the two groups. Bulk RNA-seq indicated that BMPR1B and PAPPA expressions were similar between the two groups of sheep. 3D protein structure prediction and coimmunoprecipitation analysis indicated that mutation and mutually exclusive exons of BMPR1B are the main mechanisms for prolific Tibetan sheep. We propose that PAPPA is a key gene for stimulating ovarian follicular growth and development, and steroidogenesis. Our work reveals the genetic variation in reproductive performance in Tibetan sheep, providing insights and valuable genetic resources for the discovery of genes and regulatory mechanisms that improve reproductive success.
Collapse
Affiliation(s)
- Buying Han
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Dehong Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Xue Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Sijia Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Fei Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Dehui Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Song Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
2
|
Danayimehr M, Motallebzadeh R, Ranjbar SF, Meysami MA. A comparative analysis and multi-objective optimization of replacing syngas from a downdraft gasifier in an ordinary 300 MW power plant to lessen the environmental effect. CHEMOSPHERE 2023; 335:138874. [PMID: 37201602 DOI: 10.1016/j.chemosphere.2023.138874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/30/2023] [Accepted: 05/06/2023] [Indexed: 05/20/2023]
Abstract
Due to environmental issues, disposing of household garbage is a significant obstacle for life on Earth. Due to this, several sorts of research on biomass conversion into useable fuel technologies are carried out. Among the most popular and effective technologies is the gasification process, which transforms trash into a synthetic gas that can be used in industry. Several mathematical models have been put out to mimic gasification; however, they often fall short of accurately investigating and fixing flaws in the model's waste gasification. The current study used EES software to estimate the equilibrium of Tabriz City's waste gasification using corrective coefficients. The output of this model demonstrates that raising the temperature of the gasifier outlet, waste moisture, and equivalence ratio decreases the calorific value of the synthesis gas generated. Moreover, when using the current model at 800 °C, the synthesis gas has a calorific value of 1.9 MJm3. By comparing these findings to those of previous studies, it was shown that the biomass's chemical composition and moisture content, numerical or experimental methods, gasification temperature, and preheating of the gas input air all had a major influence on process outcomes. The Cp of the system and the ηII are equivalent to 28.31 $/GJ and 17.98%, respectively, according to the integration and multi-objective findings.
Collapse
Affiliation(s)
- Mohammad Danayimehr
- Department of Mechanical Engineering, Azad Islamic University of Tabriz, Tabriz, Iran
| | | | | | | |
Collapse
|
3
|
Hai T, Abd El-Salam NM, Kh TI, Chaturvedi R, El-Shafai W, Farhang B. Comparison of two newly suggested power, refrigeration, and hydrogen production, for moving towards sustainability schemes using improved solar-powered evolutionary algorithm optimization. CHEMOSPHERE 2023:139160. [PMID: 37327820 DOI: 10.1016/j.chemosphere.2023.139160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
In the third millennium, developing countries will confront significant environmental problems such as ozone depletion, global warming, the shortage of fossil resources, and greenhouse gas emissions. This research looked at a multigenerational system that can generate clean hydrogen, fresh water, electricity, heat, and cooling. The system's components include Rankine and Brayton cycles, an Organic Rankine Cycle (ORC), flash desalination, an Alkaline electrolyzer, and a solar heliostat. The proposed process has been compared for two different start-up modes with a combustion chamber and solar heliostat to compare renewable and fossil fuel sources. This research evaluated various characteristics, including turbine pressure, system efficiency, solar radiation, and isentropic efficiency. The energy and exergy efficiency of the proposed system were obtained at around 78.93% and 47.56%, respectively. Exergy study revealed that heat exchangers and alkaline electrolyzers had the greatest exergy destruction rates, at 78.93% and 47.56%, respectively. The suggested system produces 0.04663 kg/s of hydrogen. Results indicate that at the best operational conditions, the exergetic efficiency, power, and hydrogen generation of 56%, 6000 kW, and 1.28 kg/s is reached, respectively. Also, With a 15% improvement in the Brayton cycle's isentropic efficacy, the quantity of hydrogen produced increases from 0.040 kg/s to 0.0520 kg/s.
Collapse
Affiliation(s)
- Tao Hai
- School of Computer and Information, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China; Key Laboratory of Complex Systems and Intelligent Optimization of Guizhou Province, Duyun, Guizhou, 558000, China; Institute for Big Data Analytics and Artificial Intelligence (IBDAAI), Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Nasser M Abd El-Salam
- Natural Science Department, Community College, King Saud University, Riyadh, 12642, Saudi Arabia
| | - Teeba Ismail Kh
- Department of Communication and Computer Engineering, Faculty of Engineering, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Rishabh Chaturvedi
- Department of Mechanical Engineering, Institute of Engineering & Technology, GLA University, Mathura, UP, 281001, India.
| | - Walid El-Shafai
- Department Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952, Egypt.
| | - Babak Farhang
- Department of Energy Technology, Aalborg University, Denmark
| |
Collapse
|
4
|
Niknejhad M, Mahmoudi SMS, Yari M. The design of an energy plant and artificial intelligence-based optimization for pasteurization with the least amount of carbon emissions based on animal waste. CHEMOSPHERE 2023; 333:138845. [PMID: 37156293 DOI: 10.1016/j.chemosphere.2023.138845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/23/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
It has been known for a very long time that chemical energy may be converted into electrical energy by using biomass, considered a renewable energy source. In the study that is being presented here, an explanation and a presentation are offered on a one-of-a-kind hybrid system that generates dependable power and cooling by harnessing the chemical energy of biomass. An anaerobic digester takes in organic material and converts it into biomass by using the high-energy content of cow manure as fuel. The Rankin cycle is the primary engine that drives the system that produces energy, and its combustion-based byproducts are routed to an ammonia absorption refrigeration system in order to provide sufficient cooling for the process of pasteurizing and drying the milk. It is expected that solar panels might contribute to the production of sufficient amounts of power for necessary activities. The technical and financial facets of the system are both being investigated at the moment. In addition, the optimal working conditions are determined by employing a forward-thinking multi-objective optimization strategy. This method simultaneously raises the operational effectiveness to the greatest extent that is practically possible while simultaneously lowering both expenses and emissions. The findings indicate that under ideal conditions, the levelized cost of the product (LCOP), efficiency, and emission of the system are, respectively, 0.087 $/kWh, 38.2%, and 0.249 kg/kWh. The digester and the combustion chamber both have very high exergy destruction rates, with the digester having the highest rate and the combustion chamber having the second-highest rate among all of the system's components. This assertion is supported by every one of these components.
Collapse
Affiliation(s)
- M Niknejhad
- Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran
| | | | - M Yari
- Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran
| |
Collapse
|