1
|
da Silva Júnior AH, Müller JDOM, de Oliveira CRS, de Noni Junior A, Tewo RK, Mhike W, da Silva A, Mapossa AB, Sundararaj U. New Insights into Materials for Pesticide and Other Agricultural Pollutant Remediation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3478. [PMID: 39063770 PMCID: PMC11277666 DOI: 10.3390/ma17143478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
The increase in the world population and the intensification of agricultural practices have resulted in the release of several contaminants into the environment, especially pesticides and heavy metals. This article reviews recent advances in using adsorbent and catalytic materials for environmental decontamination. Different materials, including clays, carbonaceous, metallic, polymeric, and hybrid materials, are evaluated for their effectiveness in pollutant removal. Adsorption is an effective technique due to its low cost, operational simplicity, and possibility of adsorbent regeneration. Catalytic processes, especially those using metallic nanoparticles, offer high efficiency in degrading complex pesticides. Combining these technologies can enhance the efficiency of remediation processes, promoting a more sustainable and practical approach to mitigate the impacts of pesticides and other agricultural pollutants on the environment. Therefore, this review article aims to present several types of materials used as adsorbents and catalysts for decontaminating ecosystems affected by agricultural pollutants. It discusses recent works in literature and future perspectives on using these materials in environmental remediation. Additionally, it explores the possibilities of using green chemistry principles in producing sustainable materials and using agro-industrial waste as precursors of new materials to remove contaminants from the environment.
Collapse
Affiliation(s)
- Afonso Henrique da Silva Júnior
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (A.H.d.S.J.); (J.d.O.M.M.); (C.R.S.d.O.); (A.d.N.J.); (A.d.S.)
| | - Júlia de Oliveira Martins Müller
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (A.H.d.S.J.); (J.d.O.M.M.); (C.R.S.d.O.); (A.d.N.J.); (A.d.S.)
| | - Carlos Rafael Silva de Oliveira
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (A.H.d.S.J.); (J.d.O.M.M.); (C.R.S.d.O.); (A.d.N.J.); (A.d.S.)
- Department of Textile Engineering, Federal University of Santa Catarina, Blumenau 89036-256, SC, Brazil
| | - Agenor de Noni Junior
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (A.H.d.S.J.); (J.d.O.M.M.); (C.R.S.d.O.); (A.d.N.J.); (A.d.S.)
| | - Robert Kimutai Tewo
- Department of Chemical Engineering, Dedan Kimathi University of Technology, Kiganjo/Mathari, B5, Dedan Kimathi, Nyeri Private Bag 10143, Kenya;
| | - Washington Mhike
- Polymer Technology Division, Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria 0183, South Africa;
| | - Adriano da Silva
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (A.H.d.S.J.); (J.d.O.M.M.); (C.R.S.d.O.); (A.d.N.J.); (A.d.S.)
| | - António Benjamim Mapossa
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Uttandaraman Sundararaj
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
2
|
Zhang T, Huang X, Qiao J, Liu Y, Zhang J, Wang Y. Recent developments in synthesis of attapulgite composite materials for refractory organic wastewater treatment: a review. RSC Adv 2024; 14:16300-16317. [PMID: 38769962 PMCID: PMC11103670 DOI: 10.1039/d4ra02014f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
Attapulgite clay, due to its unique crystalline hydrated magnesium-aluminium silicate composition and layer-chain structure, possesses exceptional adsorption and catalytic properties, which enable it or its composites to be utilized as adsorbents and catalysts for wastewater treatment. But the drawbacks of attapulgite are also very obvious, such as relatively low specific surface area (compared to traditional adsorbents such as activated carbon and activated alumina), easy aggregation, and difficulty in dispersion. In order to fully utilize and improve the performance of attapulgite, researchers have conducted extensive research on its modification, but few specialized works have comprehensively evaluated the synthesis, applications and challenges for attapulgite-based composite materials in refractory organic wastewater treatments. This paper provides a comprehensive review of controllable preparation strategies, characterization methods and mechanisms of attapulgite-based composite materials, as well as the research progress of these materials in refractory organic wastewater treatment. Based on this review, constructive recommendations, such as deep mechanism analysis from molecular level multi-functional attapulgite-based material developments, and using biodegradable materials in attapulgite-based composites, were proposed.
Collapse
Affiliation(s)
- Ting Zhang
- School of Petrochemical Engineering, Lanzhou University of Technology Lanzhou P. R. China
| | - Xiaoyi Huang
- School of Petrochemical Engineering, Lanzhou University of Technology Lanzhou P. R. China
| | - Jiaojiao Qiao
- School of Petrochemical Engineering, Lanzhou University of Technology Lanzhou P. R. China
| | - Yang Liu
- School of Petrochemical Engineering, Lanzhou University of Technology Lanzhou P. R. China
| | - Jingjing Zhang
- School of Petrochemical Engineering, Lanzhou University of Technology Lanzhou P. R. China
| | - Yi Wang
- School of Petrochemical Engineering, Lanzhou University of Technology Lanzhou P. R. China
| |
Collapse
|
3
|
Gupta T, Ratandeep, Dutt M, Kaur B, Punia S, Sharma S, Sahu PK, Pooja, Saya L. Graphene-based nanomaterials as potential candidates for environmental mitigation of pesticides. Talanta 2024; 272:125748. [PMID: 38364558 DOI: 10.1016/j.talanta.2024.125748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/30/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
Over the years, bioaccumulation of hazardous chemicals in the food chain has become a critical issue, resulting in numerous health risks. Environmental mitigation aims to clean up contaminated sites and eliminate hazardous materials from the air, water, or soil to restore the site to its original and safe condition. Pesticides constitute one of the most dangerous environmental pollutants which are generally used to increase crop production. Addressing the removal or treatment of pesticides has become pivotal in mitigating environmental threats. Diverse remediation methods are employed to protect the environment and public health. Graphene-based materials have emerged as promising candidates with exceptional properties, including excellent adsorption capacity due to their high surface area, strong hydrophilicity, and tunable properties. Owing to these properties, they have been attracting major research attention in the field of design and fabrication of materials for the mitigation of pesticides from the environment such as from contaminated food, water and other samples. Various physical, chemical and biological extraction techniques are adopted to remove pesticides. This review article provides an insight into the potential role of graphene-based materials in the environmental remediation of pesticides. We have focused on the removal of Organophosphates, Organochlorines, Carbamates and Pyrethroids present in water, fruit, vegetable and other samples, highlighting the urgent need for environmental remediation. While graphene-based materials hold potential for pesticide remediation, addressing challenges in scalable production, assessing long-term sustainability, and mitigating potential environmental impacts are critical steps for successful large-scale applications.
Collapse
Affiliation(s)
- Tarisha Gupta
- Department of Chemistry, IIT Gandhinagar, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Ratandeep
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Madhav Dutt
- Department of Chemistry, Sri Venkateswara College (University of Delhi), Dhaula Kuan, New Delhi, 110021, India
| | - Bikaramjeet Kaur
- Department of Chemistry, Sri Venkateswara College (University of Delhi), Dhaula Kuan, New Delhi, 110021, India
| | - Srishti Punia
- Department of Chemistry, Sri Venkateswara College (University of Delhi), Dhaula Kuan, New Delhi, 110021, India
| | - Suhani Sharma
- Department of Chemistry, Sri Venkateswara College (University of Delhi), Dhaula Kuan, New Delhi, 110021, India
| | - Prasanta Kumar Sahu
- Department of Chemistry, Shivaji College, (University of Delhi), Raja Garden, New Delhi, 110027, India
| | - Pooja
- Department of Chemistry, Sri Venkateswara College (University of Delhi), Dhaula Kuan, New Delhi, 110021, India.
| | - Laishram Saya
- Department of Chemistry, Sri Venkateswara College (University of Delhi), Dhaula Kuan, New Delhi, 110021, India.
| |
Collapse
|
4
|
Sarker A, Shin WS, Masud MAA, Nandi R, Islam T. A critical review of sustainable pesticide remediation in contaminated sites: Research challenges and mechanistic insights. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122940. [PMID: 37984475 DOI: 10.1016/j.envpol.2023.122940] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
Incidental pesticide application on farmlands can result in contamination of off-target biota, soil, groundwater, and surrounding ecosystems. To manage these pesticide contaminations sustainably, it is important to utilize advanced approaches to pesticide decontamination. This review assesses various innovative strategies applied for remediating pesticide-contaminated sites, including physical, chemical, biological, and nanoremediation. Integrated remediation approaches appear to be more effective than singular technologies. Bioremediation and chemical remediation are considered suitable and sustainable strategies for decontaminating contaminated soils. Furthermore, this study highlights key mechanisms underlying advanced pesticide remediation that have not been systematically studied. The transformation of applied pesticides into metabolites through various biotic and chemical triggering factors is well documented. Ex-situ and in-situ technologies are the two main categories employed for pesticide remediation. However, when selecting a remediation technique, it is important to consider factors such as application sites, cost-effectiveness, and specific purpose. In this review, the sustainability of existing pesticide remediation strategies is thoroughly analyzed as a pioneering effort. Additionally, the study summarizes research uncertainties and technical challenges associated with different remediation approaches. Lastly, specific recommendations and policy advocacy are suggested to enhance contemporary remediation approaches for cleaning up pesticide-contaminated sites.
Collapse
Affiliation(s)
- Aniruddha Sarker
- Residual Chemical Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do 55356, Republic of Korea.
| | - Won Sik Shin
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Md Abdullah Al Masud
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Rakhi Nandi
- Bangladesh Academy for Rural Development (BARD), Kotbari, Cumilla, Bangladesh.
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| |
Collapse
|
5
|
Xia S, Liu M, Yu H, Zou D. Pressure-driven membrane filtration technology for terminal control of organic DBPs: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166751. [PMID: 37659548 DOI: 10.1016/j.scitotenv.2023.166751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/17/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Disinfection by-products (DBPs), a series of undesired secondary contaminants formed during the disinfection processes, deteriorate water quality, threaten human health and endanger ecological safety. Membrane-filtration technologies are commonly used in the advanced water treatment and have shown a promising performance for removing trace contaminants. In order to gain a clearer understanding of the behavior of DBPs in membrane-filtration processes, this work dedicated to: (1) comprehensively reviewed the retention efficiency of microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) for DBPs. (2) summarized the mechanisms involved size exclusion, electrostatic repulsion and adsorption in the membrane retention of DBPs. (3) In conjunction with principal component analysis, discussed the influence of various factors (such as the characteristics of membrane and DBPs, feed solution composition and operating conditions) on the removal efficiency. In general, the characteristics of the membranes (salt rejection, molecular weight cut-off, zeta potential, etc.) and DBPs (molecular size, electrical property, hydrophobicity, polarity, etc.) fundamentally determine the membrane-filtration performance on retaining DBPs, and the actual operating environmental factors (such as solute concentration, coexisting ions/NOMs, pH and transmembrane pressure) exert a positive/negative impact on performance to some extent. Current researches indicate that NF and RO can be effective in removing DBPs, and looking forward, we recommend that multiple factors should be taken into account that optimize the existed membrane-filtration technologies, rationalize the selection of membrane products, and develop novel membrane materials targeting the removal of DBPs.
Collapse
Affiliation(s)
- Shuai Xia
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Meijun Liu
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China
| | - Haiyang Yu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Donglei Zou
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China.
| |
Collapse
|
6
|
Shehata N, Egirani D, Olabi AG, Inayat A, Abdelkareem MA, Chae KJ, Sayed ET. Membrane-based water and wastewater treatment technologies: Issues, current trends, challenges, and role in achieving sustainable development goals, and circular economy. CHEMOSPHERE 2023; 320:137993. [PMID: 36720408 DOI: 10.1016/j.chemosphere.2023.137993] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/03/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Membrane-based technologies are recently being considered as effective methods for conventional water and wastewater remediation processes to achieve the increasing demands for clean water and minimize the negative environmental effects. Although there are numerous merits of such technologies, some major challenges like high capital and operating costs . This study first focuses on reporting the current membrane-based technologies, i.e., nanofiltration, ultrafiltration, microfiltration, and forward- and reverse-osmosis membranes. The second part of this study deeply discusses the contributions of membrane-based technologies in achieving the sustainable development goals (SDGs) stated by the United Nations (UNs) in 2015 followed by their role in the circular economy. In brief, the membrane based processes directly impact 15 out of 17 SDGs which are SDG1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16 and 17. However, the merits, challenges, efficiencies, operating conditions, and applications are considered as the basis for evaluating such technologies in sustainable development, circular economy, and future development.
Collapse
Affiliation(s)
- Nabila Shehata
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Davidson Egirani
- Faculty of Science, Niger Delta University, Wilberforce Island, Nigeria
| | - A G Olabi
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah, 27272, United Arab Emirates; Mechanical Engineering and Design, Aston University, School of Engineering and Applied Science, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Abrar Inayat
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Mohammad Ali Abdelkareem
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah, 27272, United Arab Emirates; Chemical Engineering Department, Minia University, Elminia, Egypt
| | - Kyu-Jung Chae
- Department of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan, 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan, 49112, South Korea.
| | - Enas Taha Sayed
- Chemical Engineering Department, Minia University, Elminia, Egypt.
| |
Collapse
|