1
|
Nie E, Xu L, Chen Y, Chen Y, Lu Y, Zhang S, Yu Z, Li QX, Ye Q, Wang H. Effects of reduced graphene oxide nanomaterials on transformation of 14C-triclosan in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173858. [PMID: 38876353 DOI: 10.1016/j.scitotenv.2024.173858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Increasing use and release of graphene nanomaterials and pharmaceutical and personal care products (PPCPs) in soil environment have polluted the environment and posed high ecological risks. However, little is understood about the interactive effects and mechanism of graphene on the behaviors of PPCPs in soil. In the present study, the effects of reduced graphene oxide nanomaterials (RGO) on the fate of triclosan in two typical soils (S1: silty loam; S2: silty clay loam) were investigated with 14C-triclosan, high-resolution mass spectrometry, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), density functional theory (DFT) calculations, and microbial community structure analysis. The results showed that RGO prolonged the half-life of triclosan by 23.6-51.3 %, but delayed the formation of transformed products such as methyl triclosan and dechlorinated dimer of triclosan in the two typical soils. Mineralization of triclosan to 14CO2 was inhibited by 48.2-79.3 % in 500 mg kg-1 RGO in comparison with that in the control, whereas the bound residue was 54.2-56.4 % greater than the control. RGO also reduced the relative abundances of triclosan-degrading bacteria (Pseudomonas and Sphingomonas) in soils. Compared to silty loam, RGO more effectively inhibited triclosan degradation in silty clay loam. Furthermore, the DFT calculations suggested a strong association of the adsorption of triclosan on RGO with the van der Waals forces and π-π interactions. These results revealed that RGO inhibited the transformation of 14C-triclosan in soil through strong adsorption and triclosan-degrading bacteria inhibition in soils. Therefore, the presence of RGO may potentially enhance persistence of triclosan in soil. Overall, our study provides valuable insights into the risk assessment of triclosan in the presence of GNs in soil environment.
Collapse
Affiliation(s)
- Enguang Nie
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Lei Xu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yan Chen
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yandao Chen
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yuhui Lu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Sufen Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Zhiyang Yu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Haiyan Wang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Wang C, Chen L, Xu J, Zhang L, Yang X, Zhang X, Zhang C, Gao P, Zhu L. Environmental behaviors and toxic mechanisms of engineered nanomaterials in soil. ENVIRONMENTAL RESEARCH 2024; 242:117820. [PMID: 38048867 DOI: 10.1016/j.envres.2023.117820] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/05/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Engineered nanomaterials (ENMs) are inevitably released into the environment with the exponential application of nanotechnology. Parts of ENMs eventually accumulate in the soil environment leading to potential adverse effects on soil ecology, crop production, and human health. Therefore, the safety application of ENMs on soil has been widely discussed in recent years. More detailed safety information and potential soil environmental risks are urgently needed. However, most of the studies on the environmental effects of metal-based ENMs have been limited to single-species experiments, ecosystem processes, or abiotic processes. The present review formulated the source and the behaviors of the ENMs in soil, and the potential effects of single and co-exposure ENMs on soil microorganisms, soil fauna, and plants were introduced. The toxicity mechanism of ENMs to soil organisms was also reviewed including oxidative stress, the release of toxic metal ions, and physical contact. Soil properties affect the transport, transformation, and toxicity of ENMs. Toxic mechanisms of ENMs include oxidative stress, ion release, and physical contact. Joint toxic effects occur through adsorption, photodegradation, and loading. Besides, future research should focus on the toxic effects of ENMs at the food chain levels, the effects of ENMs on plant whole-lifecycle, and the co-exposure and long-term toxicity effects. A fast and accurate toxicity evaluation system and model method are urgently needed to solve the current difficulties. It is of great significance for the sustainable development of ENMs to provide the theoretical basis for the ecological risk assessment and environmental management of ENMs.
Collapse
Affiliation(s)
- Chaoqi Wang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Le'an Chen
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Jiake Xu
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Lanlan Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoqing Yang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Xiaokai Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Cheng Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China.
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, United States
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
3
|
Menacherry SPM, Kodešová R, Fedorova G, Sadchenko A, Kočárek M, Klement A, Fér M, Nikodem A, Chroňáková A, Grabic R. Dissipation of twelve organic micropollutants in three different soils: Effect of soil characteristics and microbial composition. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132143. [PMID: 37531764 DOI: 10.1016/j.jhazmat.2023.132143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023]
Abstract
The dissipation kinetics and half-lives of selected organic micropollutants, including pharmaceuticals and others, were systematically investigated and compared among different soil types. While some pollutants (e.g., atorvastatin, valsartan, and bisphenol S) disappeared rapidly in all the tested soils, many of them (e.g., telmisartan, memantine, venlafaxine, and azithromycin) remained persistent. Irrespective of the soil characteristics, venlafaxine showed the lowest dissipation kinetics and the longest half-lives (250 to approximately 500 days) among the stable compounds. The highest first and second-order kinetics were, however, recorded for valsartan (k1; 0.262 day-1) and atorvastatin (k2; 33.8 g μg-1 day-1) respectively. Nevertheless, more than 90% (i.e., DT90) of all the rapidly dissipated compounds (i.e., atorvastatin, bisphenol S, and valsartan) disappeared from the tested soils within a short timescale (i.e., 5-36 days). Dissipation of pollutants that are more susceptible to microbial degradation (e.g., atorvastatin, bisphenol S, and valsartan) seems to be slower for soils possessing the lowest microbial biomass C (Cmic) and total phospholipid fatty acids (PLFAtotal), which also found statistically significant. Our results revealing the persistence of several organic pollutants in agricultural soils, which might impact the quality of these soils, the groundwater, and eventually on the related biota, is of high environmental significance.
Collapse
Affiliation(s)
- Sunil Paul M Menacherry
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, CZ-16500 Prague 6, Czech Republic.
| | - Radka Kodešová
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, CZ-16500 Prague 6, Czech Republic
| | - Ganna Fedorova
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-38925 Vodňany, Czech Republic
| | - Alina Sadchenko
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-38925 Vodňany, Czech Republic
| | - Martin Kočárek
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, CZ-16500 Prague 6, Czech Republic
| | - Aleš Klement
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, CZ-16500 Prague 6, Czech Republic
| | - Miroslav Fér
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, CZ-16500 Prague 6, Czech Republic
| | - Antonín Nikodem
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, CZ-16500 Prague 6, Czech Republic
| | - Alica Chroňáková
- Institute of Soil Biology, Biology Centre CAS, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-38925 Vodňany, Czech Republic
| |
Collapse
|