1
|
Xu Y, Wang X, van der Hoek JP, Liu G, Lompe KM. Natural Organic Matter Stabilizes Pristine Nanoplastics but Destabilizes Photochemical Weathered Nanoplastics in Monovalent Electrolyte Solutions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 39813155 DOI: 10.1021/acs.est.4c11540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Photochemical weathering and eco-corona formation through natural organic matter (NOM) adsorption play vital roles in the aggregation tendencies of nanoplastics (NPs) in aquatic environments. However, it remains unclear how photochemical weathering alters the adsorption patterns of NOM and the conformation of the eco-corona, subsequently affecting the aggregation tendencies of NPs. This study examined the effect of Suwannee River NOM adsorption on the aggregation kinetics of pristine and photoaged polystyrene (PS) NPs in monovalent electrolyte solutions. The results showed that photochemical weathering influenced the conformation of the eco-corona, which, in turn, determined NP stability in the presence of NOM. Hydrophobic components of NOM predominantly bound to pristine NPs through hydrophobic and π-π interactions, and extended hydrophilic segments in water hindered NP aggregation via steric repulsion. Conversely, hydrogen bonding facilitated the binding of these hydrophilic segments to multiple photoaged NPs, thereby destabilizing them through polymer bridging. Additionally, the stabilization and destabilization capacities of NOM increased with its concentration and molecular weight. These findings shed light on the destabilizing role of NOM in weathered NPs, offering new perspectives on environmental colloidal chemistry and the fate of NPs in complex aquatic environments.
Collapse
Affiliation(s)
- Yanghui Xu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- Section of Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Xintu Wang
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Jan Peter van der Hoek
- Section of Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
- Waternet, Department Research & Innovation, P.O. Box 94370, 1090 GJ Amsterdam, The Netherlands
| | - Gang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- Section of Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kim Maren Lompe
- Section of Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| |
Collapse
|
2
|
Wu S, Wu Z, Wang S, Zhang Y, Liao Y, Cai C. Regulation of the co-transport of toluene and dichloromethane by adsorbed phase humic acid under different hydro-chemical conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122562. [PMID: 39305885 DOI: 10.1016/j.jenvman.2024.122562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 11/17/2024]
Abstract
The transport behavior of combined organic pollutants in soil and groundwater has attracted significant attention in recent years. Research on the influence of humic acid (HA) on organic pollutant transport behavior mainly focuses on the study of the mobile phase HA, with less research on the adsorbed phase HA, especially regarding its interaction with combined pollutants. To enhance understanding of the regulation of co-transport and retention of combined pollutants by adsorbed phase HA, in this study, tests were conducted to investigate how toluene (TOL) and dichloromethane (DCM) are transported in the presence of adsorbed phase HA at different pH levels and ionic strengths. As the proportions of HA-coated sand increased, so did its adsorption capacity for TOL and DCM, which can be attributed to adsorbed phase HA providing more adsorption sites compared to plain sand, thereby reducing the transport potential of the pollutants. The presence of both TOL and DCM facilitated their mutual transportation due to competitive adsorption controlled by the adsorbed phase HA content in the porous medium. Furthermore, it was observed that pH levels influenced the transport behavior of TOL and DCM when adsorbed phase HA was present since adsorbed phase HA transformation into mobile phase was regulated by pH levels. The transport patterns can be effectively simulated using the chemical nonequilibrium two-site sorption model in HYDRUS-1D, accurately reflecting the retardation coefficients and transport distances based on model parameters. This work sheds new light on the regulatory role of adsorbed phase HA in TOL and DCM transport under diverse hydrochemical conditions, with implications for accurately depicting the behavior of combined pollutants, optimizing the remediation strategies and improving remediation efficiency in contaminated sites.
Collapse
Affiliation(s)
- Shengyu Wu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongran Wu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Suhang Wang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Youchi Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongkai Liao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Cai
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Liang Y, Jin J, Chen H, Xu J, Wang M, Tan W. Modeling of phosphate speciation on goethite surface: Effects of humic acid. CHEMOSPHERE 2024; 359:142351. [PMID: 38761821 DOI: 10.1016/j.chemosphere.2024.142351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Iron (hydr)oxides and humic acid (HA) are important active components in soils and usually coexist in the environment. The effects of HA on the adsorption and subsequent immobilization of phosphate on iron (hydr)oxide surface are of great importance in studies of soil fertility and eutrophication. In this study, two types of goethite with different particle sizes were prepared to investigate the phosphate adsorption behaviors and complexation mechanisms in the absence or presence of HA by combining multiple characterization and modeling studies. The adsorption capacity of micro- (M-Goe) and nano-sized goethite (N-Goe) for phosphate was 2.02 and 2.04 μmol/m2, which decreased by ∼25% and ∼45% in the presence of 100 and 200 mg/L HA, respectively. Moreover, an increase in equilibrium phosphate concentration significantly decreased the adsorption amount of goethite for HA. Charge distribution-multisite surface complexation (CD-MUSIC) and natural organic matter-charge distribution (NOM-CD) modeling identified five phosphate complexes and their corresponding affinity constants (logKP). Among these phosphate complexes, FeOPO2OH, (FeO)2PO2, and (FeO)2POOH species were predominant complexes on the surface of both M-Goe and N-Goe across a wide range of pH and initial phosphate concentrations. The presence of HA had little effect on the coordination mode and logKP of phosphate on goethite surface. These results and the obtained model parameters shed new lights on the interfacial reactivity of phosphate at the goethite-water interface in the presence of HA, and may facilitate further prediction of the environmental fate of phosphate in soils and sediments.
Collapse
Affiliation(s)
- Yu Liang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China
| | - Jiezi Jin
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Hongfeng Chen
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, PR China.
| | - Jinling Xu
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, PR China
| | - Mingxia Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| |
Collapse
|
4
|
Xu Y, Bai Y, Hiemstra T, Weng L. A new consistent modeling framework for the competitive adsorption of humic nanoparticles and oxyanions to metal (hydr)oxides: Multiple modes of heterogeneity, fractionation, and conformational change. J Colloid Interface Sci 2024; 660:522-533. [PMID: 38262179 DOI: 10.1016/j.jcis.2024.01.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
HYPOTHESIS The competitive interaction of oxyanions and humic nanoparticles (HNPs) with metal (hydr)oxide surfaces can be used to trace the ligand and charge distribution of adsorbed HNPs in relation to heterogeneity, fractionation, and conformational change. EXPERIMENTS Batch adsorption experiments of HNPs on goethite were performed in the absence and presence of phosphate. The size of HNPs was measured with size exclusion chromatography. The Ligand and Charge Distribution (LCD) model framework was further developed to describe the simultaneous interaction of HNPs and phosphate with goethite. FINDINGS Preferential adsorption decreases the mean molar mass of adsorbed HNPs, independent of the phosphate presence, showing a linear dependency on the adsorbed HNPs fraction. Phosphate ion can be used as a probe to trace the distribution of functional groups and the variation in affinity of HNPs. The spatial distribution of adsorbed HNPs is driven by the potential gradients in the electrical double layer, which changes the conformation of the adsorbed HNPs. At the particle level, the adsorption of heterogeneous HNPs has an affinity distribution, which can be explained by the variation in molar mass (kDa) and density of the functional groups (mol kg-1) of the HNPs. The presented model can simultaneously describe the competitive adsorption of HNPs and phosphate in a consistent manner.
Collapse
Affiliation(s)
- Yun Xu
- Soil Chemistry and Chemical Soil Quality, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yilina Bai
- Soil Chemistry and Chemical Soil Quality, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Tjisse Hiemstra
- Soil Chemistry and Chemical Soil Quality, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Liping Weng
- Soil Chemistry and Chemical Soil Quality, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; Agro-Environmental Protection Institute, Ministry of Agriculture, 300191 Tianjin, China.
| |
Collapse
|