1
|
Wang S, Li C, Yin H, Gao B, Yu Z, Zhou Y, Wang J, Xu H, Wu J, Sun Y. A novel Ag/Bi/Bi 2O 2CO 3 photocatalyst effectively removes antibiotic-resistant bacteria and tetracycline from water under visible light irradiation. ENVIRONMENTAL RESEARCH 2025; 264:120313. [PMID: 39510230 DOI: 10.1016/j.envres.2024.120313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024]
Abstract
Currently, achieving dual applications of Bi2O2CO3-based photocatalysts in photocatalytic degradation and sterilization under visible-light conditions is challenging. In this study, a novel Ag/Bi/Bi2O2CO3 visible-light photocatalyst with bimetallic doping and rich oxygen vacancies was successfully synthesized using a one-pot hydrothermal crystallization method. The existence of oxygen vacancies was verified by X-ray photoelectron spectroscopy (XPS) and Electron spin resonance (ESR) analysis. The experimental results showed that Ag/Bi/Bi2O2CO3 killed ∼100% (log 7) of antibiotic-resistant Escherichia coli (AR-E. coli) within 60 min and degraded 83.81% of tetracycline (TC) within 180 min under visible light irradiation. Moreover, Ag/Bi/Bi2O2CO3 can still remove 61.07% of TC in water after 5 cycles, showing excellent photocatalytic cycle stability and reusability. The possible degradation pathway of TC was determined by liquid chromatography-mass spectrometry. It was found that the main active substances in the photocatalytic disinfection of AR-E. coli were 1O2, h+, and ·OH, while 1O2 was the dominant active species in the photocatalytic degradation of TC. This study presents a promising Bi2O2CO3-based visible light photocatalyst for treating both antibiotics (TC) and antibiotic-resistant bacteria (AR-E. coli) in water.
Collapse
Affiliation(s)
- Suo Wang
- School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Changyu Li
- School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Huanshun Yin
- College of Chemistry and Material Science, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China.
| | - Bin Gao
- Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Zhengkun Yu
- College of Chemistry and Material Science, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 271018, Tai'an, Shandong, People's Republic of China
| | - Hongxia Xu
- School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Jichun Wu
- School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yuanyuan Sun
- School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
2
|
Ai L, Yin H, Wang J, Yin X, Li Y, Sun H. Dynamic ion exchange engineering bismuth ferrite-derived Bi 2O 2CO 3 for rapid piezo-photocatalytic degradation of tetracycline. J Colloid Interface Sci 2024; 661:815-830. [PMID: 38330654 DOI: 10.1016/j.jcis.2024.01.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Piezoelectric materials can generate the built-in electric field under ultrasound assistance, which is beneficial to the separation of the photogenerated electron-hole pairs in photocatalysis. Meanwhile, the ultrasound stress usually leads to accelerate electron transfer and enhance catalytic activity. Thus, piezo-photocatalysis technique is believed to be one of the effective techniques for organic pollutant degradation. In this work, a binary piezoelectric integrated piezo-photocatalytic Z-Scheme heterojunction with bismuth ferrite (BFO) and bismuth oxycarbonate (Bi2O2CO3, BOC) based on the in situ production of Bi2O2CO3 on Bi25FeO40 surface in dichloromethane, where Bi25FeO40 was employed as piezoelectric materials and Bi source, CO2 dissolved in dichloromethane was used as carbon source. Under 60 min ultrasound and visible light irradiation, the optimal BFO/BOC presented a higher piezo-photocatalytic tetracycline (TC) degradation rate (95 %) than Bi25FeO40 (30 %) and Bi2O2CO3 (17 %). Moreover, the optimal BFO/BOC illustrated higher piezo-photocatalytic TC degradation rate under ultrasound and visible light irradiation than that under visible light condition and ultrasound condition, respectively. These results strongly demonstrated the synergistically piezo-photocatalytic degradation of TC by BFO and BOC. This work not only provides a novel piezo-photocatalyst for pollutant degradation, but also provides a novel method to prepare Bi2O2CO3-based piezo-photocatalytic composite catalyst.
Collapse
Affiliation(s)
- Luchen Ai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shanxi 712100, PR China
| | - Huanshun Yin
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018 Taian, Shandong, China.
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shanxi 712100, PR China
| | - Yanyong Li
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018 Taian, Shandong, China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shanxi 712100, PR China.
| |
Collapse
|
3
|
Song Y, Bao Z, Gu Y. Photocatalytic Enhancement Strategy with the Introduction of Metallic Bi: A Review on Bi/Semiconductor Photocatalysts. CHEM REC 2024; 24:e202300307. [PMID: 38084448 DOI: 10.1002/tcr.202300307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/17/2023] [Indexed: 03/10/2024]
Abstract
Semiconductor photocatalysis has great potential in the fields of solar fuel production and environmental remediation. Nevertheless, the photocatalytic efficiency still constrains its practical production applications. The development of new semiconductor materials is essential to enhance the solar energy conversion efficiency of photocatalytic systems. Recently, the research on enhancing the photocatalytic performance of semiconductors by introducing bismuth (Bi) has attracted widespread attention. In this review, we briefly overview the main synthesis methods of Bi/semiconductor photocatalysts and summarize the control of the micromorphology of Bi in Bi/semiconductors and the key role of Bi in the catalytic system. In addition, the promising applications of Bi/semiconductors in photocatalysis, such as pollutant degradation, sterilization, water separation, CO2 reduction, and N2 fixation, are outlined. Finally, an outlook on the challenges and future research directions of Bi/semiconductor photocatalysts is given. We aim to offer guidance for the rational design and synthesis of high-efficiency Bi/semiconductor photocatalysts for energy and environmental applications.
Collapse
Affiliation(s)
- Yankai Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zongqi Bao
- Foreign Language Department, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yingying Gu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
4
|
Liu K, Liang C, Lv H, Yao X, Li X, Ding J, Chen N, Wang S, Liu W, Hu X, Wang J, Yin H. Photocatalytic degradation of butyl benzyl phthalate by S-scheme Bi/Bi 2O 2CO 3/Bi 2S 3 under simulated sunlight irradiation. CHEMOSPHERE 2024; 350:141046. [PMID: 38154674 DOI: 10.1016/j.chemosphere.2023.141046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/13/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
As a kind of plasticizer, butyl benzyl phthalate (BBP) presents a serious hazard to the ecosystem. Therefore, there is a strong need for an effective technique to eliminate the risk of BBP. In this work, a new photocatalyst of Bi/Bi2O2CO3/Bi2S3 with an S-scheme heterojunction was synthesized using Bi(NO3)3 as the Bi source, Na2S as the S source, and DMF as the carbon source and reductant. Numerous techniques have been used to characterize Bi/Bi2O2CO3/Bi2S3, such as scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The improved photoactivity of Bi/Bi2O2CO3/Bi2S3 was evaluated by photoelectrochemical response, electrochemical impedance spectroscopy, photoluminescence, UV-Vis diffuse reflectance spectroscopy, and electrochemical Mott Schottky spectroscopy. The enhanced photocatalytic activity of this composite for BBP degradation under simulated sunlight irradiation could be attributed to the surface plasmon resonance effect of Bi metal and the heterojunction structure of Bi2O2CO3 and Bi2S3. The degradation rate of Bi/Bi2O2CO3/Bi2S3 was 85%, which was 4.52 and 1.52 times that of Bi2O2CO3 and Bi2S3, respectively. The prepared photocatalyst possessed good stability and reproducibility in eliminating BBP. The improved photocatalytic activity of Bi/Bi2O2CO3/Bi2S3 was demonstrated with the formation of an S-scheme heterojunction, and the degradation mechanism was discussed with a liquid chromatograph mass spectrometer.
Collapse
Affiliation(s)
- Kexue Liu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Chunliu Liang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Huijuan Lv
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xianxu Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Jia Ding
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Na Chen
- Ningyang Environmental Monitoring Centre, 271400, Ningyang, Tai'an, Shandong, PR China
| | - Suo Wang
- College of Chemistry and Material Science, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China
| | - Wenrong Liu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xue Hu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| | - Huanshun Yin
- College of Chemistry and Material Science, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China.
| |
Collapse
|
5
|
Ding J, Su G, Zhou Y, Yin H, Wang S, Wang J, Zhang W. Construction of Bi/BiOI/BiOCl Z-scheme photocatalyst with enhanced tetracycline removal under visible light. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122942. [PMID: 37972681 DOI: 10.1016/j.envpol.2023.122942] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Bi/BiOI/BiOCl composite photocatalyst was constructed by one-step stirring approach at ambient environment to remove of tetracycline (TC) antibiotics via photodegradation in aqueous medium. A systematic discussion of the architecture, composition, formation, photochemical performance and photocatalytic activity of Bi/BiOI/BiOCl was carried out. By adjusting the experimental conditions, it was found that the Bi/BiOI/BiOCl photocatalyst obtained by using 0.7 mmol NaBH4, I/Cl = 5% and reacting for 6 h had the greatest removal performance. Under visible light irradiation, the photocatalytic degradation efficiency of TC reached 90.3% within 60 min, surpassing that of single BiOCl and BiOI. Through the active species removal experiment, it was determined that •O2- made a primary contribution to the photocatalytic degradation process. Moreover, the formation of Z-scheme heterojunction in Bi/BiOI/BiOCl was discussed, analyzing the photocatalytic mechanism and TC degradation pathway. The ecological toxicity of TC solution before and after degradation to rice seedlings was preliminarily tested. This study provides an idea for one-step synthesis of bismuth-based composite photocatalysts, with potential applications in the photocatalytic degradation of antibiotics.
Collapse
Affiliation(s)
- Jia Ding
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 271018, Tai'an, Shandong, People's Republic of China; College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, People's Republic of China
| | - Guangxia Su
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, People's Republic of China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, People's Republic of China
| | - Huanshun Yin
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, People's Republic of China
| | - Suo Wang
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, People's Republic of China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 271018, Tai'an, Shandong, People's Republic of China.
| | - Wenjuan Zhang
- Shandong Green and Blue Bio-technology Co. Ltd, Tai'an, People's Republic of China
| |
Collapse
|
6
|
Song Y, Long A, Ge X, Bao Z, Meng M, Hu S, Gu Y. Construction of floatable flower-like plasmonic Bi/BiOCl-loaded hollow kapok fiber photocatalyst for efficient degradation of RhB and antibiotics. CHEMOSPHERE 2023; 343:140240. [PMID: 37739132 DOI: 10.1016/j.chemosphere.2023.140240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
The development of low-cost and high-efficiency photocatalysts for the degradation of organic pollutants has been an essential and feasible approach to environmental remediation. However, conventional powder photocatalysts suffer from agglomeration, limited light utilization, and reuse difficulties, which hinder their large-scale practical application. Herein, a floatable flower-like plasmonic Bi/BiOCl-loaded hollow kapok fiber (KF/Bi/BC) photocatalyst was synthesized by a facile solvothermal method. It exhibited excellent photocatalytic degradation of Rhodamine B (RhB), ofloxacin (OFX), and tetracycline (TC) under UV-vis irradiation. The incorporation of metallic Bi not only greatly enhanced the light absorption of BiOCl in the visible region but also served as an effective "electron trap", facilitating the efficient separation and transfer of photogenerated electrons and holes. Furthermore, the remarkable floatability of the catalyst contributed to increased light utilization and facilitated the recycling of the catalyst. This work provided a convenient, effective, and feasible method for the fabrication of floatable photocatalysts with excellent catalytic properties, and has great potential for practical applications.
Collapse
Affiliation(s)
- Yankai Song
- School of Materials and Chemistry. University of Shanghai for Science and Technology, Address: No. 516, Jungong Road, Shanghai, 200093, PR China
| | - Anchun Long
- School of Materials and Chemistry. University of Shanghai for Science and Technology, Address: No. 516, Jungong Road, Shanghai, 200093, PR China
| | - Xianlong Ge
- School of Materials and Chemistry. University of Shanghai for Science and Technology, Address: No. 516, Jungong Road, Shanghai, 200093, PR China
| | - Zongqi Bao
- School of Materials and Chemistry. University of Shanghai for Science and Technology, Address: No. 516, Jungong Road, Shanghai, 200093, PR China
| | - Minfeng Meng
- School of Materials and Chemistry. University of Shanghai for Science and Technology, Address: No. 516, Jungong Road, Shanghai, 200093, PR China
| | - Shaohua Hu
- School of Materials and Chemistry. University of Shanghai for Science and Technology, Address: No. 516, Jungong Road, Shanghai, 200093, PR China
| | - Yingying Gu
- School of Materials and Chemistry. University of Shanghai for Science and Technology, Address: No. 516, Jungong Road, Shanghai, 200093, PR China.
| |
Collapse
|
7
|
Cao L, Zhou Y, Gao L, Zheng Y, Cui X, Yin H, Wang S, Zhang M, Zhang H, Ai S. Photoelectrochemical biosensor for DNA demethylase detection based on enzymatically induced double-stranded DNA digestion by endonuclease-exonuclease system and Bi 4O 5Br 2-Au/CdS photoactive material. Talanta 2023; 262:124670. [PMID: 37245429 DOI: 10.1016/j.talanta.2023.124670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/22/2023] [Accepted: 05/12/2023] [Indexed: 05/30/2023]
Abstract
A novel photoelectrochemical (PEC) biosensor for the detection of DNA demethylase MBD2 was developed based on Bi4O5Br2-Au/CdS photosensitive material. Bi4O5Br2 was firstly modified with gold nanoparticles (AuNPs), following with the modification onto the ITO electrode with CdS to realize the strong photocurrent response as a result of AuNPs had good conductibility and the matched energy between CdS and Bi4O5Br2. In the presence of MBD2, double-stranded DNA (dsDNA) on the electrode surface was demethylated, which triggered the digestion activity of endonuclease HpaII to cleave dsDNA and induced the further cleavage of the dsDNA fragment by exonuclease III (Exo III), causing the release of biotin labeled dsDNA and inhibiting the immobilization of streptavidin (SA) onto the electrode surface. As a results, the photocurrent was increased greatly. However, in the absence of MBD2, HpaII digestion activity was inhibited by DNA methylation modification, which further caused the failure in the release of biotin, leading to the successful immobilization of SA onto the electrode to realize a low photocurrent. The sensor had a detection of 0.3-200 ng/mL and a detection limit was 0.09 ng/mL (3σ). The applicability of this PEC strategy was assessed by studying the effect of environmental pollutants on MBD2 activity.
Collapse
Affiliation(s)
- LuLu Cao
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China.
| | - Lanlan Gao
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Yulin Zheng
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Xiaoting Cui
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Huanshun Yin
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China.
| | - Suo Wang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Miao Zhang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Haowei Zhang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Shiyun Ai
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| |
Collapse
|
8
|
Xie K, Xu S, Xu K, Hao W, Wang J, Wei Z. BiOCl Heterojunction photocatalyst: Construction, photocatalytic performance, and applications. CHEMOSPHERE 2023; 317:137823. [PMID: 36649899 DOI: 10.1016/j.chemosphere.2023.137823] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/14/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
BiOCl semiconductors have attracted extensive amounts of attention and have substantial potential in alleviating energy shortages, improving sterilization performance, and solving environmental issues. To improve the optical quantum efficiency of layered BiOCl, the lifetimes of photogenerated electron-hole pairs, and BiOCl reduction capacity. During the past decade, researchers have designed many effective methods to weaken the effects of these limitations, and heterojunction construction is regarded as one of the most promising strategies. In this paper, BiOCl heterojunction photocatalysts designed and synthesized by various research groups in recent years were reviewed, and their photocatalytic properties were tested. Among them, direct Z-scheme and S-scheme photocatalysts have high redox potentials and intense redox capabilities. Hence, they exhibit excellent photocatalytic activity. Furthermore, the applications of BiOCl heterojunctions for pollutant degradation, CO2 reduction, water splitting, N2 fixation, organic synthesis, and tumor ablation are also reviewed. Finally, we summarize research on the BiOCl heterojunctions and put forth new insights on overcoming their present limitations.
Collapse
Affiliation(s)
- Kefeng Xie
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Shengyuan Xu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Kai Xu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Wei Hao
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Jie Wang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Zheng Wei
- Cancer Research Institute, Henan Academy Institute of Chinese Medicine, Zhengzhou 450000, Henan, China; School of Basic Medicine Sciences, Henan University of Chinese Medicine; Zhengzhou 450004, China.
| |
Collapse
|