1
|
Guchhait S, Choudhary A, Darbha GK. Influence of goethite on the fate of antibiotic (tetracycline) in the aqueous environment: Effect of cationic and anionic surfactants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178495. [PMID: 39837122 DOI: 10.1016/j.scitotenv.2025.178495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/23/2025]
Abstract
Over the last decades, the release and occurrence of organic pollutants in aquatic systems have become a major global concern due to their bioaccumulation, toxicity, and adverse effects on the ecosystem. Tetracycline (TC), a widely used antibiotic, is often found at high concentrations in the aqueous environment and tends to bind with the natural colloids. Post-COVID-19 pandemic, the release of surfactants in the environment has increased due to the excessive use of washing and cleaning products. This study systematically investigated the interaction of goethite with TC in the absence and presence of anionic (sodium dodecyl sulfate, SDS) and cationic (cetyltrimethylammonium bromide, CTAB) surfactants. The impact of various environmental parameters like pH, ionic strength, temperature, and organic matter was also studied. It was observed that SDS has drastically increased TC sorption onto goethite from 11 mg/g to 19 mg/g, while CTAB had the opposite effect. To delineate the goethite-TC interaction mechanisms, FTIR with two-dimensional correlation analysis (2D-COS) was performed. The pH of the solution was crucial in the presence of SDS, while ionic strength did not affect the interaction process. The sorption process was endothermic, as evidenced by the increase in sorption capacity with the rise in the temperature. The presence of organic matter hinders the sorption of TC onto goethite, which is also observed in river water where the organic content is very high. Overall, our study helps to predict the fate of organic pollutants like antibiotics in aqueous environments in the coexistence of surfactants and iron oxyhydroxides.
Collapse
Affiliation(s)
- Soumadip Guchhait
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Aniket Choudhary
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Gopala Krishna Darbha
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| |
Collapse
|
2
|
Büngener L, Galvão A, Postila H, Heiderscheidt E. Microplastic retention in green walls for nature-based and decentralized greywater treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125047. [PMID: 39357553 DOI: 10.1016/j.envpol.2024.125047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/30/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
In wastewater treatment, two issues have recently received increased attention: nature-based solutions for addressing urban water stress through decentralized treatment and re-use; and emerging pollutants such as microplastics (MPs). At the interface of these, this study investigated living green walls for greywater treatment and their potential for MP removal. A large, pilot-scale green wall was irrigated with greywater (a mix of water collected from laundry, dishwasher, bathroom sinks, and synthetic greywater), and effluent from planted and unplanted sections was compared. MPs >50 μm were analyzed using μRaman spectroscopy and supplementary fluorescence microscopy imaging. The green wall proved efficient for the reduction of chemical oxygen demand (COD) (around 80%), removal of total suspended solids (TSS) (around 90%) and MPs, especially for MPs of the non-polar, hydrophobic polymer type polystyrene and MPs sized 100-500 μm. MP removal was improved in the planted (50-60%) compared to the unplanted section (20%), especially for the size fraction 100-500 μm. Physical filtration by the green wall growing media (a mix of perlite with a grain size of 1-5 mm, and coconut fiber), which was further enhanced by plant roots decreasing the effective pore size, can be considered the most important removal mechanism. Charge-mediated adsorption cannot be expected as MPs and growing media mix were both negatively charged at the prevailing water pH (7-8). Fluorescence imaging for MP analysis, using a merged UV/blue light fluorograph, overestimated MP concentrations in greywater (hundreds of MPs per sample were identified by fluorescence imaging versus tens of MPs by μRaman spectroscopy) and would benefit from further improvement before it can be reliably applied as a cheaper and faster alternative methodology for MP analysis.
Collapse
Affiliation(s)
- Lina Büngener
- Water, Energy and Environmental Engineering, Faculty of Technology, 90014, University of Oulu, Finland.
| | - Ana Galvão
- CERIS, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Heini Postila
- Water, Energy and Environmental Engineering, Faculty of Technology, 90014, University of Oulu, Finland
| | - Elisangela Heiderscheidt
- Water, Energy and Environmental Engineering, Faculty of Technology, 90014, University of Oulu, Finland
| |
Collapse
|
3
|
Lascari D, Cataldo S, Muratore N, Prestopino G, Pignataro B, Lazzara G, Arrabito G, Pettignano A. Label-free impedimetric analysis of microplastics dispersed in aqueous media polluted by Pb 2+ ions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7654-7666. [PMID: 39320121 DOI: 10.1039/d4ay01324g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The rapid differentiation between polluted and unpolluted microplastics (MPs) is critical for tracking their presence in the environment and underpinning their potential risks to humans. However, the quantitative analysis of polluted microplastics on the field is limited by the lack of rapid methods that do not need optical analysis nor their capture onto sophisticated electrochemical sensor platforms. Herein, a simple analytical approach for MPs dispersed in aqueous media leveraging electrochemical impedance spectroscopy (EIS) analysis on screen-printed sensors is presented. This method is demonstrated by the EIS-based analysis of two standards of microplastics beads (MPs), one of polystyrene (PS) and one of polystyrene carboxylated (PS-COOH), when exposed to aqueous solutions containing Pb2+ ions. The adsorption of Pb2+ ions on the MPs was quantitatively determined by voltammetric analysis. EIS permitted to rapidly (about 2 minutes) differentiate clean MPs from the Pb2+ polluted ones. These results could constitute a first-step towards the realization of a portable impedimetric sensor for the quantification of microplastics polluted by metal ions in aqueous solutions.
Collapse
Affiliation(s)
- Davide Lascari
- Dipartimento di Fisica e Chimica - Emilio Segrè, Università di Palermo, V.le delle Scienze, ed. 17, 90128 Palermo, Italy.
| | - Salvatore Cataldo
- Dipartimento di Fisica e Chimica - Emilio Segrè, Università di Palermo, V.le delle Scienze, ed. 17, 90128 Palermo, Italy.
- NBFC, National Biodiversity Future Center, Palermo, Piazza Marina 61, 90133 Palermo, Italy
| | - Nicola Muratore
- Dipartimento di Fisica e Chimica - Emilio Segrè, Università di Palermo, V.le delle Scienze, ed. 17, 90128 Palermo, Italy.
| | - Giuseppe Prestopino
- Dipartimento di Ingegneria Industriale, Università degli Studi di Roma "Tor Vergata", Via del Politecnico, 00133 Rome, Italy
| | - Bruno Pignataro
- Dipartimento di Fisica e Chimica - Emilio Segrè, Università di Palermo, V.le delle Scienze, ed. 17, 90128 Palermo, Italy.
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica - Emilio Segrè, Università di Palermo, V.le delle Scienze, ed. 17, 90128 Palermo, Italy.
- NBFC, National Biodiversity Future Center, Palermo, Piazza Marina 61, 90133 Palermo, Italy
| | - Giuseppe Arrabito
- Dipartimento di Fisica e Chimica - Emilio Segrè, Università di Palermo, V.le delle Scienze, ed. 17, 90128 Palermo, Italy.
| | - Alberto Pettignano
- Dipartimento di Fisica e Chimica - Emilio Segrè, Università di Palermo, V.le delle Scienze, ed. 17, 90128 Palermo, Italy.
- NBFC, National Biodiversity Future Center, Palermo, Piazza Marina 61, 90133 Palermo, Italy
| |
Collapse
|
4
|
Liu S, Huang J, Shi L, He W, Zhang W, Li E, Zhang C, Pang H, Tan X. Interaction of Pb(II) with microplastic-sediment complexes: Critical effect of surfactant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124815. [PMID: 39182819 DOI: 10.1016/j.envpol.2024.124815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
In this study, the impact of surfactants on the adsorption behavior of Pb(II) onto microplastics-sediment (MPs-S) complexes was investigated. Firstly, virgin polyamide (VPA) and polyethylene (VPE) were placed in Xiangjiang River sediment for six months to conduct in-situ aging. The results indicated that the biofilm-developed polyamide (BPA) and polyethylene (BPE) formed new oxygen-containing functional groups and different biofilm species. Furthermore, the adsorption capacity of Pb(II) in sediment (S) and MPs-S complexes was in the following order: S > BPA-S > VPE-S > VPA-S > BPE-S. The addition of sodium dodecyl benzenesulfonate (SDBS) promoted the adsorption of Pb(II), and the adsorption amount of Pb(II) increased with the higher concentration of SDBS, while adding cetyltrimethylammonium bromide (CTAB) showed the opposite result. The adsorption process of MPs-S complexes to Pb(II) was dominated by chemical adsorption, and the interaction between MPs-S complexes and Pb(II) was multilayer adsorption involving physical and chemical adsorption when the surfactants were added. Besides, the pH exerts a significant effect on Pb(II) adsorption in different MPs-S complexes, and the highest adsorption amount occurred at pH 6. Noteworthy, CTAB promoted the adsorption ability of Pb(II) when the exogenous FA was added. The binding characteristic of sediment endogenous DOM components and Pb(II) was influenced by the addition of MPs and surfactants. Finally, it confirmed that adsorption mechanisms mainly involve electrostatic and hydrophobic interaction. This study provides a new perspective to explore the environmental behaviors of Pb(II) by MPs and sediments with the addition of surfactants, which was conducive to evaluating the ecological risks of MPs and heavy metals in aquatic environments.
Collapse
Affiliation(s)
- Si Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| | - Lixiu Shi
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Wenjuan He
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Enjie Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Chenyu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Haoliang Pang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| |
Collapse
|
5
|
Chen H, Yin L, He Y, Bai L, Wu Y, Zhao Y, Reguyal F, Sarmah AK, Yang X, Ge C, Wang H. Biogas slurry-derived dissolved organic matter inhibited oxytetracycline adsorption by tropical agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174785. [PMID: 39009170 DOI: 10.1016/j.scitotenv.2024.174785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The increasing presence of oxytetracycline (OTC) in agricultural soils has raised global environmental concerns. We investigated the environmental behavior and fate of OTC in two types of tropical agricultural soils, focusing on the impact of dissolved organic matter (DOM) from biogas slurry. Techniques such as three-dimensional excitation-emission matrix fluorescence spectroscopy (3D-EEM), Fourier Transform Infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and Ultraviolet-visible spectrophotometer (UV-vis) were used to explore the adsorption mechanisms. Our findings revealed that biogas slurry-derived DOM decreased the OTC adsorption on soils and extended the time to reach adsorption equilibrium. Specifically, the equilibrium adsorption of OTC by the two soils decreased by 19.41 and 15.32 %, respectively. These adsorption processes were effectively modelled by Elovich, intraparticle diffusion, linear, and Freundlich thermodynamic models. Thermodynamic parameters suggested that OTC adsorption onto soils was spontaneous and endothermic, with competitive interactions between biogas slurry-derived DOM and OTC molecules intensifying at higher DOM concentrations. The adsorption mechanisms were governed by both physical and chemical processes. Furthermore, the presence of Ca2+ and Na+ ions significantly inhibited OTC adsorption. These insights advanced our understanding of the fate and risk of OTC in soil environments influenced by DOM, contributing to more informed agricultural and environmental management practices.
Collapse
Affiliation(s)
- Hui Chen
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Lingfei Yin
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Yuan He
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Liangtai Bai
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Yuejun Wu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Yuanyuan Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Febelyn Reguyal
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Pribate Bag 92019, Auckland 1142, New Zealand
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Pribate Bag 92019, Auckland 1142, New Zealand
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
6
|
Zhao K, Li C, Li F. Research progress on the origin, fate, impacts and harm of microplastics and antibiotic resistance genes in wastewater treatment plants. Sci Rep 2024; 14:9719. [PMID: 38678134 PMCID: PMC11055955 DOI: 10.1038/s41598-024-60458-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024] Open
Abstract
Previous studies reported microplastics (MPs), antibiotics, and antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs). There is still a lack of research progress on the origin, fate, impact and hazards of MPs and ARGs in WWTPs. This paper fills a gap in this regard. In our search, we used "microplastics", "antibiotic resistance genes", and "wastewater treatment plant" as topic terms in Web of Science, checking the returned results for relevance by examining paper titles and abstracts. This study mainly explores the following points: (1) the origins and fate of MPs, antibiotics and ARGs in WWTPs; (2) the mechanisms of action of MPs, antibiotics and ARGs in sludge biochemical pools; (3) the impacts of MPs in WWTPs and the spread of ARGs; (4) and the harm inflicted by MPs and ARGs on the environment and human body. Contaminants in sewage sludge such as MPs, ARGs, and antibiotic-resistant bacteria enter the soil and water. Contaminants can travel through the food chain and thus reach humans, leading to increased illness, hospitalization, and even mortality. This study will enhance our understanding of the mechanisms of action among MPs, antibiotics, ARGs, and the harm they inflict on the human body.
Collapse
Affiliation(s)
- Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China
| | - Chengzhi Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Fengxiang Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China.
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
7
|
Dong D, Guo Z, Yang X, Dai Y. Comprehensive understanding of the aging and biodegradation of polystyrene-based plastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123034. [PMID: 38016589 DOI: 10.1016/j.envpol.2023.123034] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/27/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
The extensive utilization and inadequate handling of plastics have resulted in severe environmental ramifications. In particular, plastics composed solely of a carbon-carbon (C-C) backbone exhibit limited degradation due to the absence of hydrolyzable functional groups. Plastics with enduring longevity in the natural environment are susceptible to environmental factors and their intrinsic properties, subsequently undergoing a series of aging processes that culminate in biodegradation. This article focuses on polystyrene (PS), which constitutes 20% of total plastic waste, as a case study. Initially, the application of PS in life and the impacts it poses are introduced. Following that, the key factors influencing the aging of PS are discussed, primarily encompassing its properties (e.g., surface characteristics, additives) and environmental factors (e.g., water matrices, biofilms). Lastly, an overview of microbial degradation of PS is provided, including potential microorganisms involved in PS degradation (bacteria, fungi, algae, and insects), four processes of microbial degradation (colonization, bio-fragmentation, assimilation, and mineralization), and potential mechanisms of microbial degradation. This study provides a comprehensive understanding of the multifaceted influences affecting the aging and biodegradation mechanisms of PS, thereby contributing valuable insights for the future management of plastic pollution.
Collapse
Affiliation(s)
- Dazhuang Dong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Zhi Guo
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China.
| | - Xue Yang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Yaodan Dai
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
8
|
Phasukarratchai N. Effects and applications of surfactants on the release, removal, fate, and transport of microplastics in aquatic ecosystem: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121393-121419. [PMID: 37999837 DOI: 10.1007/s11356-023-30926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
Microplastics (MPs) and surfactants (STs) are emerging pollutants in the environment. While many studies have focused on the interactions of STs with MPs, there has not been a comprehensive review focusing on the effect of STs on MPs in aquatic ecosystems. This review summarizes methods for removal of MPs from wastewater (e.g., filtration, flotation, coagulation/flocculation, adsorption, and oxidation-reduction) and the interactions and effects of STs with MPs (adsorption, co-adsorption, desorption, and toxicity). STs can modify MPs surface properties and influence their removal using different wastewater treatments, as well as the adsorption-desorption of both organic and inorganic chemicals. The concentration of STs is a crucial factor that impacts the removal or adsorption of pollutants onto MPs. At low concentrations, STs tend to facilitate MPs removal by flotation and enhance the adsorption of pollutants onto MPs. High ST concentrations, mainly above the critical micelle concentrations, cause MPs to become dispersed and difficult to remove from water while also reducing the adsorption of pollutants by MPs. Excess STs form emulsions with the pollutants, leading to electrostatic repulsion between MPs/STs and the pollutant/STs. As for the toxicity of MPs, the addition of STs to MPs shows complicated results, with some cases showing an increase in toxicity, some showing a decrease, and some showing no effect.
Collapse
Affiliation(s)
- Naphatsarnan Phasukarratchai
- Faculty of Environment and Resource Studies, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
9
|
Brahana PJ, Al Harraq A, Saab LE, Roberg R, Valsaraj KT, Bharti B. Uptake and release of perfluoroalkyl carboxylic acids (PFCAs) from macro and microplastics. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1519-1531. [PMID: 37602395 DOI: 10.1039/d3em00209h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Microplastics and per- and polyfluoroalkyl substances (PFAS) are two of the most notable emerging contaminants reported in the environment. Micron and nanoscale plastics possess a high surface area-to-volume ratio, which could increase their potential to adsorb pollutants such as PFAS. One of the most concerning sub-classes of PFAS are the perfluoroalkyl carboxylic acids (PFCAs). PFCAs are often studied in the same context as other environmental contaminants, but their amphiphilic properties are often overlooked in determining their fate in the environment. This lack of consideration has resulted in a diminished understanding of the environmental mobility of PFCAs, as well as their interactions with environmental media. Here, we investigate the interaction of PFCAs with polyethylene microplastics, and identify the role of environmental weathering in modifying the nature of interactions. Through a series of adsorption-desorption experiments, we delineate the role of the fluoroalkyl tail in the binding of PFCAs to microplastics. As the number of carbon atoms in the fluoroalkyl chain increases, there is a corresponding increase in the adsorption of PFCAs onto microplastics. This relationship can become modified by environmental weathering, where the PFCAs are released from the macro and microplastic surface after exposure to simulated sunlight. This study identifies the fundamental relationship between PFCAs and plastic pollutants, where they can mutually impact their thermodynamic and transport properties.
Collapse
Affiliation(s)
- Philip J Brahana
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, 70803, USA.
| | - Ahmed Al Harraq
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, 70803, USA.
| | - Luis E Saab
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, 70803, USA.
| | - Ruby Roberg
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, 70803, USA.
| | - Kaillat T Valsaraj
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, 70803, USA.
| | - Bhuvnesh Bharti
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, 70803, USA.
| |
Collapse
|
10
|
Chan SY, Liu SY, Wu R, Wei W, Fang JKH, Chua SL. Simultaneous Dissemination of Nanoplastics and Antibiotic Resistance by Nematode Couriers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37267481 DOI: 10.1021/acs.est.2c07129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nanoplastics (NPs) are increasingly recognized as a newly emerging pollutant in the environment. NPs can enable the colonization of microbial pathogens on their surfaces and adsorb toxic pollutants, such as heavy metals and residual antibiotics. Although the dissemination of plastic particles in water bodies and the atmosphere is widely studied, the dissemination of NPs and adsorbed pollutants on land, via biological means, is poorly understood. Since soil animals, such as the bacterivorous nematode Caenorhabditis elegans (C. elegans), are highly mobile, this raises the possibility that they play an active role in disseminating NPs and adsorbed pollutants. Here, we established that antibiotic-resistant bacteria could aggregate with antibiotic-adsorbed NPs to form antibiotic-adsorbed NP-antibiotic resistant bacteria (ANP-ARB) aggregates, using polymyxins (colistin) as a proof-of-concept. Colistin-resistant mcr-1 bearing Escherichia coli from a mixed population of resistant and sensitive bacteria selectively aggregate with colistin-ANPs. In the soil microcosm, C. elegans fed on ANP-ARB clusters, resulting in the rapid spread of ANP-ARB by the nematodes across the soil at a rate of 40-60 cm per day. Our work revealed insights into how NPs could still disseminate across the soil faster than previously thought by "hitching a ride" in soil animals and acting as agents of antibiotic-resistant pathogens and antibiotic contaminants. This poses direct risks to ecology, agricultural sustainability, and human health.
Collapse
Affiliation(s)
- Shepherd Yuen Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Sylvia Yang Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Rongben Wu
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Wei Wei
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
- Research Institute for Land and Space, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Song Lin Chua
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
- Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen 518057, China
- Research Centre for Deep Space Explorations, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
11
|
Kuang B, Chen X, Zhan J, Zhou L, Zhong D, Wang T. Interaction behaviors of sulfamethoxazole and microplastics in marine condition: Focusing on the synergistic effects of salinity and temperature. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115009. [PMID: 37182302 DOI: 10.1016/j.ecoenv.2023.115009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/18/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
Microplastics and antibiotics are two common pollutants in the ocean. However, due to changes of salinity and temperature in the ocean, their interaction are significantly different from that of fresh water, and the mechanism remains unclear. Here, the interactions of sulfamethoxazole (SMZ) and microplastics were studied at different temperatures and salinities. The saturation adsorption capacity of SMZ in polypropylene (PP), polyethylene (PE), styrene (PS), polyvinyl chloride (PVC), and synthetic resins (ABS) were highest at the temperature of 20 °C, with 0.118 ± 0.002 mg·g-1, 0.106 ± 0.004 mg·g-1, 0.083 ± 0.002 mg·g-1, 0.062 ± 0.007 mg·g-1 and 0.056 ± 0.003 mg·g-1, respectively. The effect of temperature reduction is more significant than temperature rise. The intraparticle diffusion model is appropriate to PP, when film diffusion model suited for PS. The salinity has a more significant effect than temperature on different microplastics, due to the electrostatic adsorption and iron exchange. With the increase in salinity from 0.05% to 3.5%, the adsorption capacity of microplastics on SMZ fell by 53.3 ± 5%, and there was no discernible difference of various microplastics. The hydrogen bond and π-π conjugation of microplastics play an important role in the adsorption of SMZ. These findings further deepen the understanding of the interaction between microplastics and antibiotics in the marine environment.
Collapse
Affiliation(s)
- Bin Kuang
- Jiangmen Polytechnic, Jiangmen 529020, PR China; Department of Civil and Environmental Engineering, University of Surrey, Surrey GU2 7XH, United Kingdom.
| | - Xuanhao Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Jianing Zhan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Lilin Zhou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | | | - Tao Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China.
| |
Collapse
|