1
|
Shahrukh S, Baldauf R, Popek R, Moniruzzaman M, Huda MN, Islam MM, Hossain SA, Hossain ME. Removal of airborne particulate matter by evergreen tree species in Dhaka, Bangladesh. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125194. [PMID: 39461612 DOI: 10.1016/j.envpol.2024.125194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Urban air quality stands as a pressing concern in cities globally, with airborne particulate matter (PM) emerging as a significant threat to human health. An investigation was carried out to examine the potential of four prevalent evergreen roadside tree species grown at different locations in Dhaka to capture PM using their leaves. The distribution of PM by mass and quantity in Dhaka are presented for the first time for Bangladesh and these results will also be applicable to countries with similar climates and tree species. Separate gravimetric analyses were carried out to quantify PM in three different size ranges (0.2-2.5 μm, 2.5-10 μm, and 10-100 μm) accumulated on surfaces and trapped within waxes by using the rinse and weigh method. The method is validated for the first time through SEM-EDX analysis, which confirmed that the increase in weight from chloroform-rinsed leaves was exclusively attributable to particle deposition on the filter. The chemical composition of the deposited PM2.5 was analyzed quantitatively by determining the concentration of twenty-five trace elements employing ICP-MS. SEM-EDX analysis revealed the significance of leaf microstructural traits in effectively capturing PM. Significant variations in the deposition of PM were found among different species for two PM categories (surface PM and wax-embedded PM) and three size fractions (large, coarse, and fine) (one-way ANOVA; p < 0.05). The quantity of wax retained on the foliage of trees documented in these locations also varied (p < 0.05). Among the species studied, Ficus benghalensis demonstrated a greater ability to retain PM. Mangifera indica was identified to be the most efficient collector of wax-related PM and appears to be the ideal species for traffic-heavy areas distinguished by high concentrations of organic compounds from vehicle emissions.
Collapse
Affiliation(s)
- Saif Shahrukh
- Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Richard Baldauf
- Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC, USA
| | - Robert Popek
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Muhammad Nurul Huda
- Centre for Advanced Research in Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Mominul Islam
- Department of Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shahid Akhtar Hossain
- Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh
| | | |
Collapse
|
2
|
Huang ZY, Yuan CS, Yen PH, Tu IC, Tseng YL. Temporal variations and chemical characteristics of marine PM 2.5 at Dongsha Islands, South China Sea: Three-year measurement. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124378. [PMID: 38885829 DOI: 10.1016/j.envpol.2024.124378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
The study of long-range transport effects on marine fine particles (PM2.5), particularly in remote sites such as the Dongsha Islands, is pivotal for advancing our understanding of air pollution dynamics on a regional scale and for formulating effective environmental policies. PM2.5 concentrations were examined over three consecutive years and grouped based on their transport routes. The backward trajectory simulation revealed that high PM2.5 concentrations were observed in the West Channel, originating from North and Central China, the Korean Peninsula, and the Japanese Islands, opposed to the East Channel. High PM2.5 concentrations, commonly observed in winter and spring, were mainly attributed to the Asian Northeastern Monsoons. Water-soluble inorganic ions constituted the major components, accounting for 37.8-48.7% of PM2.5, and followed by metal elements (15.5-20.0%), carbons (7.5-13.3%), levoglucosan (0.01-0.17%), and organic aerosols (0.2-2.2%). Secondary inorganic aerosols as the dominant source accounted for 8.3-24.7% of PM2.5, while sea salts were the secondary major contributor. High levoglucosan contribution (3.8-7.2%) in winter and spring was attributed to biomass burning, mainly from the Indochina Peninsula. Chemical mass balance receptor modeling resolved that major sources of PM2.5 were secondary sulfate, sea salts, fugitive dust, and industrial boilers. This study concluded that the long-range transport of PM2.5 gradually increased since fall, contributing 52.1-74.3%, highlighting its substantial impact on PM2.5 in all seasons except summer.
Collapse
Affiliation(s)
- Zi-You Huang
- Institute of Environmental Engineering, National Sun Yat-sen University, 70, Lian-Hai Road, Kaohsiung, 804, Taiwan
| | - Chung-Shin Yuan
- Institute of Environmental Engineering, National Sun Yat-sen University, 70, Lian-Hai Road, Kaohsiung, 804, Taiwan; Aerosol Science Research Center, National Sun Yat-sen University, 70, Lian-Hai Road, Kaohsiung, 804, Taiwan.
| | - Po-Hsuan Yen
- Institute of Environmental Engineering, National Sun Yat-sen University, 70, Lian-Hai Road, Kaohsiung, 804, Taiwan
| | - I-Chieh Tu
- Institute of Environmental Engineering, National Sun Yat-sen University, 70, Lian-Hai Road, Kaohsiung, 804, Taiwan
| | - Yu-Lun Tseng
- Institute of Environmental Engineering, National Sun Yat-sen University, 70, Lian-Hai Road, Kaohsiung, 804, Taiwan
| |
Collapse
|
3
|
Jashim ZB, Shahrukh S, Hossain SA, Jahan-E-Gulshan, Huda MN, Islam MM, Hossain ME. Biomonitoring potentially toxic elements in atmospheric particulate matter of greater Dhaka region using leaves of higher plants. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:468. [PMID: 38656463 DOI: 10.1007/s10661-024-12612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
In this study, four different plant species, namely Artocarpus heterophyllus, Mangifera indica, Psidium guajava, and Swietenia mahagoni, were selected from seven different locations to assess the feasibility of using them as a cost-effective alternative for biomonitoring air quality. Atmospheric coarse particulate matter (PM10), soil samples, and leaf samples were collected from residential, industrial, and traffic-congested sites located in the greater Dhaka region. The heavy metal concentrations (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in the leaves of the different species, PM10, and soil samples were analyzed. The highest Pb (718 ng/m3) and Zn (15,956 ng/m3) concentrations were found in PM10 of Kodomtoli which is an industrial area. On the other hand, the highest Fe (6,152 ng/m3) and Ni (61.1 ng/m3) concentrations were recorded in the PM10 of Gabtoli, a heavy-traffic area. A significant positive correlation (r = 0.74; p < 0.01) between Pb content in plant leaves and PM fraction was found which indicated that atmospheric PM-bound Pb may contribute to the uptake of Pb by plant leaves. The analysis of the enrichment factor (EF) revealed that soils were contaminated with Cd, Ni, Pb, and Zn. The abaxial leaf surfaces of Psidium guajava growing at the polluted site exhibited up to a 40% decrease in stomatal pores compared to the control site. Saet's summary index (Zc) demonstrated that Mangifera indica had the highest bioaccumulation capacity. The metal accumulation index (MAI) was also evaluated to assess the overall metal accumulation capacity of the selected plants. Of the four species, Swietenia mahagoni (3.05) exhibited the highest MAI value followed by Mangifera indica (2.97). Mangifera indica and Swietenia mahagoni were also found to accumulate high concentrations of Pb and Cr in their leaves and are deemed to be good candidates to biomonitor Pb and Cr contents in ambient air.
Collapse
Affiliation(s)
- Zuairia Binte Jashim
- Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Saif Shahrukh
- Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shahid Akhtar Hossain
- Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Jahan-E-Gulshan
- Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Muhammad Nurul Huda
- Centre for Advanced Research in Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Mominul Islam
- Department of Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
| | | |
Collapse
|
4
|
Jawaa ZT, Biswas KF, Khan MF, Moniruzzaman M. Source and respiratory deposition of trace elements in PM 2.5 at an urban location in Dhaka city. Heliyon 2024; 10:e25420. [PMID: 38375259 PMCID: PMC10875380 DOI: 10.1016/j.heliyon.2024.e25420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/21/2024] Open
Abstract
Air pollution has been creating severe environmental crises in Dhaka. This city ranks at the top among the major cities of the world. A multidimensional study is needed to assess the severity of this crisis. This study aims to determine the sources of trace elements in PM2.5 and their effects on health. We measured concentrations of 15 trace elements in PM2.5 every hour for eight days using a well-equipped mobile air quality monitoring system integrated with an automatic sampling system (AQMS, Horiba, Japan). We analyzed the concentrations of the trace elements to identify their potential sources and diurnal variation and to compute the respiratory deposition dose of the trace elements to estimate the health risks they pose. The daily average concentration of PM2.5 was higher than the allowable limit set by the World Health Organization (WHO). Among the trace elements, sulfur had the highest concentration and vanadium was the lowest. We found out that concentrations of the elements were the highest during the middle of the day and the lowest during midnight. Four source profiles of PM2.5 were identified by positive matrix factorization (PMF). Soil dust with sulfur-rich petroleum contributed about 65 %, industrial and non-exhaust emissions about 5 % each, and heavy engine oil combustion about 25 % to air pollution. Air mass backward trajectory analysis indicated that Dhaka's air contains both local and transboundary pollution. According to the determined respiratory deposition dose of the elements, males had higher deposition than females during heavy exercise. Sulfur and vanadium have the highest and lowest respiratory deposition dose, respectively. The highest amount of deposition occurred in the upper airways. We expect that this study will help professionals develop effective strategies to prevent and mitigate the emission of air pollutants.
Collapse
Affiliation(s)
- Zarin Tasneem Jawaa
- Department of Environmental Science and Management, North South University, Dhaka, Bangladesh
| | - Karabi Farhana Biswas
- Department of Environmental Science and Management, North South University, Dhaka, Bangladesh
| | - Md Firoz Khan
- Department of Environmental Science and Management, North South University, Dhaka, Bangladesh
| | | |
Collapse
|
5
|
Vishwakarma YK, Gogoi MM, Babu SNS, Singh RS. How dominant the load of bioaerosols in PM 2.5 and PM 10: a comprehensive study in the IGP during winter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112277-112289. [PMID: 37828262 DOI: 10.1007/s11356-023-29931-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023]
Abstract
The winter period is most ideal for studying near-surface aerosols in the Indo-Gangetic plains (IGP) of India, since this period is inundated with significantly higher concentrations of aerosols across the unique geographical domain because of shallow atmospheric boundary layer. This study focuses on analysing the concentration of the biotic component of aerosols (bioaerosols) in a central location of the IGP and estimating their dominance in ambient particulate matter (PM) from 2021 to 2023. Observations showed that bioaerosol concentrations also increased significantly with the increasing concentrations of PM2.5 and PM10, suggesting that bioaerosols are a dominant component of the total aerosol load in the atmosphere. The total microbe's concentration (collectively fungi and bacteria) was found to be 94 to 226 cfu m-3 in PM2.5 and 167 to 375 cfu m-3 in PM10 where bacteria contributed 81.12 and 79.99%, respectively. The contribution of fungal spores in PM2.5 and PM10 remained as 18.88 and 20.01%, respectively, in the total microbes in the respective particulate matter. In the bioaerosols, fungi, namely Aspergillus, Cladosporium, and Penicillium, were dominant, and bacteria, namely E. coli, Mammaliicoccus and Enterobacter, were prevalent in both the PM size regimes. The most prominent microbial presence was observed when the temperature ranged between 16 and 20°C and relative humidity between 80 and 85%. The outcomes of the present study will be useful for further research on the health effect of the bioaerosols in the IGP.
Collapse
Affiliation(s)
- Yogesh Kumar Vishwakarma
- Department of Chemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Mukunda Madhab Gogoi
- Space Physics Laboratory, Vikram Sarabhai Space Centre, Indian Space Research Organisation (ISRO), Trivandrum, 695 022, India
| | - Surendran Nair Suresh Babu
- Space Physics Laboratory, Vikram Sarabhai Space Centre, Indian Space Research Organisation (ISRO), Trivandrum, 695 022, India
| | - Ram Sharan Singh
- Department of Chemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
6
|
Najurudeen NANB, Khan MF, Suradi H, Mim UA, Raim INJ, Rashid SB, Latif MT, Huda MN. The presence of polycyclic aromatic hydrocarbons (PAHs) in air particles and estimation of the respiratory deposition flux. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163129. [PMID: 37001671 DOI: 10.1016/j.scitotenv.2023.163129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in the atmospheric particles constitute a topic of growing health concern. This study aims to calculate PAH concentrations, identify the source, assess the health risk from exposure to carcinogenic PAHs, and the respiratory deposition flux. PM10 and PM2.5 were collected in September 2019 in the urban, semi-urban, and semi-urban-industrial areas of Kuala Lumpur, Batu Pahat, and Bukit Rambai, respectively. A total of 18 PAHs from PM10 and 17 PAHs from PM2.5 were extracted using dichloromethane and determined using gas chromatography coupled with a flame ionization detector (GC-FID). The health risk assessment (HRA) calculated included B[a]P equivalent (B[a]Peq), lifetime lung cancer risk (LLCR), incremental lifetime cancer risk (ILCR), and respiratory deposition dose (RDD). The results show PAHs in PM10 recorded in Kuala Lumpur (DBKL), Batu Pahat (UTHM), and Bukit Rambai are 9.91, 8.45, and 9.57 ng/m3, respectively. The average PAHs in PM2.5 at the three sampling sites are 11.65, 9.68, and 9.37 ng/m3, respectively. The major source of PAHs obtained from the DRs indicates pyrogenic activities for both particle sizes. For PM10, the total B[a]Peq in DBKL, UTHM, and Bukit Rambai were 1.97, 1.82, and 2.32 ng/m3, respectively. For PM2.5 samples, the total B[a]Peq in DBKL, UTHM, and Bukit Rambai were 2.80, 2.33, and 2.57 ng/m3, respectively. The LLCR and ILCR show low to moderate risk for all age groups. The RDD of adults and adolescents is highest in both PM10 and PM2.5, followed by children, toddlers, and infants. Overall, we perceive that adults and adolescents living in the urban area of Kuala Lumpur are at the highest risk for respiratory health problems because of prolonged exposure to PAHs in PM10 and PM2.5, followed by children, toddlers, and infants.
Collapse
Affiliation(s)
| | - Md Firoz Khan
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Environmental Science and Management, North South University, Dhaka 1229, Bangladesh.
| | - Hamidah Suradi
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ummay Ayesha Mim
- Department of Environmental Science and Management, North South University, Dhaka 1229, Bangladesh
| | - Israt Nur Janntul Raim
- Department of Environmental Science and Management, North South University, Dhaka 1229, Bangladesh
| | - Sara Binte Rashid
- Department of Environmental Science and Management, North South University, Dhaka 1229, Bangladesh
| | - Mohd Talib Latif
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Muhammad Nurul Huda
- Centre for Advanced Research in Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
7
|
Yen PH, Yuan CS, Lee GW, Ceng JH, Huang ZY, Chiang KC, Du IC, Tseng YL, Soong KY, Jeng MS. Chemical characteristics and spatiotemporal variation of marine fine particles for clustered channels of air masses transporting toward remote background sites in East Asia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121870. [PMID: 37225076 DOI: 10.1016/j.envpol.2023.121870] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
This study investigated the chemical characteristics, spatiotemporal distribution, and source apportionment of marine fine particles (PM2.5) for clustered transport channels/routes of air masses moving toward three remote sites in East Asia. Six transport routes in three channels were clustered based on backward trajectory simulation (BTS) in the order of: West Channel > East Channel > South Channel. Air masses transported toward Dongsha Island (DS) came mainly from the West Channel, while those transported toward Green Island (GR) and Kenting Peninsula (KT) came mostly from the East Channel. High PM2.5 commonly occurred from late fall to early spring during the periods of Asian Northeastern Monsoons (ANMs). Marine PM2.5 was dominated by water-soluble ions (WSIs) which were predominated by secondary inorganic aerosols (SIAs). Although the metallic content of PM2.5 was predominated by crustal elements (Ca, K, Mg, Fe, and Al), enrichment factor clearly showed that trace metals (Ti, Cr, Mn, Ni, Cu, and Zn) came mainly from anthropogenic sources. Organic carbon (OC) was superior to elemental carbon (EC), while OC/EC and SOC/OC ratios in winter and spring were higher than those in other two seasons. Similar trends were observed for levoglucosan and organic acids. The mass ratio of malonic acid and succinic acid (M/S) was commonly higher than unity, showing the influences of biomass burning (BB) and secondary organic aerosols (SOAs) on marine PM2.5. We resolved that the main sources of PM2.5 were sea salts, fugitive dust, boiler combustion, and SIAs. Boiler combustion and fishing boat emissions at DS had higher contribution than those at GR and KT. The highest/lowest contribution ratios of cross-boundary transport (CBT) were 84.9/29.6% in winter and summer, respectively.
Collapse
Affiliation(s)
- Po-Hsuan Yen
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Chung-Shin Yuan
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung City, Taiwan; Aeroaol Science Research Center, National Sun Yat-sen University, Kaohsiung City, Taiwan.
| | - Gia-Wei Lee
- Departmnt of Safety, Health and Environmental Engineering, National University of Science and Technology, Kaohsiung City, Taiwan
| | - Jun-Hao Ceng
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Zi-You Huang
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Kuan-Chen Chiang
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - I-Chieh Du
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Yu-Lun Tseng
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Ker-Yea Soong
- Institute of Marine Biology, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Ming-Shiou Jeng
- Biodiversity Research Center, Academia Sinica, Nangang, Taipei, Taiwan; Green Island Marine Research Station, Biodiversity Research Center, Academia Sinica, Green Island, Taitung, Taiwan
| |
Collapse
|