1
|
Punniyamoorthy R, Murugesan P, Sanchez A, Francescangeli F, Frontalini F. Assessing the Ecological Quality Status in tropical Indian estuaries: testing the applicability of benthic foraminiferal indices. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51604-51618. [PMID: 39115734 DOI: 10.1007/s11356-024-34579-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 07/27/2024] [Indexed: 09/06/2024]
Abstract
The ecological quality status (EcoQS) of Vellar and Uppanar estuaries (Southeast coast of India) has been monitored monthly, using a combination of foraminiferal (Foram Stress Index: FSI and exp(H'bc) indices and abiotic (Pollution Load Index: PLI, Dissolved Oxygen: DO, and Total Organic Carbon: TOC) parameters. The Uppanar Estuary shows relatively higher values of PLI and TOC and lower DO values than Vellar Estuary. The highest value of TOC and PLI are recorded during the monsoon season. These variations are well mirrored by the change in exp(H'bc) and FSI. The lowest values of exp(H'bc) are observed with the monsoon season and could be ascribed by an overall reduction of salinity, and to the highest level of TOC and PLI in response to enhanced river discharge. The FSI also exhibits great variability with significant higher values in the Vellar Estuary than in the Uppanar Estuary. The EcoQS evaluated by a combination of pollution- (i.e., PLI, TOC and DO) and foraminiferal-based [i.e., FSI and exp(H'bc)] indices are highly consistent (73.4%). The most frequent disagreement among indices is mostly associated to Uppanar Estuary and, particularly, in the inner stations. This difference might be related to a time-lag response of benthic foraminifera in terms of diversity and assemblages' compositions as well as of the pollution indicators in response to enhanced riverine input. This study further supports the application of foraminiferal-based indices in EcoQS assessment in transitional environments including tropical Indian estuaries. It also fills the gap of knowledge by providing a seasonal perspective on the variation of EcoQS based on a monthly-scale sampling.
Collapse
Affiliation(s)
- Rengasamy Punniyamoorthy
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, Tamilnadu, India
| | - Perumal Murugesan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, Tamilnadu, India.
| | - Alberto Sanchez
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, Av. IPN SN, Col. Playa Palo de Sta. Rita, La Paz, B.C.S, Mexico
| | | | - Fabrizio Frontalini
- Department of Pure and Applied Sciences, University of Urbino, 61029, Urbino, Italy
| |
Collapse
|
2
|
Lincoln S, Chowdhury P, Posen PE, Robin RS, Ramachandran P, Ajith N, Harrod O, Hoehn D, Harrod R, Townhill BL. Interaction of climate change and marine pollution in Southern India: Implications for coastal zone management practices and policies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166061. [PMID: 37543339 DOI: 10.1016/j.scitotenv.2023.166061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Climate change and marine litter are inextricably linked, and their interaction manifests differently depending on the specific environmental and biological characteristics, and other human activities taking place. The negative impacts resulting from those synergistic interactions are threatening coastal and marine ecosystems and the many goods and services they provide. This is particularly pervasive in the coastal zone of the Indian subcontinent. India is already experiencing severe climate change impacts, which are projected to worsen in the future. At the same time, the country is gripped by a litter crisis that is overwhelming authorities and communities and hindering the country's sustainable development goals. The coastal environment and communities of the southern states of Kerala and Tamil Nadu are particularly vulnerable to the impacts of climate change. While these state governments and authorities are stepping up efforts to improve the management of their coastal zones, the scale and severity of these issues are mounting. Here we review the combined effects of climate change and marine litter pollution in Southern India, focusing on the Gulf of Mannar Reserve in Tamil Nadu and the Malabar Coast in Kerala. Finally, we discuss effective management options that could help improve resilience and sustainability.
Collapse
Affiliation(s)
- Susana Lincoln
- International Marine Climate Change Centre, The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Cefas Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, United Kingdom.
| | - Piyali Chowdhury
- International Marine Climate Change Centre, The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Cefas Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Paulette E Posen
- International Marine Climate Change Centre, The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Cefas Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - R S Robin
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, India
| | - Purvaja Ramachandran
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, India
| | - Nithin Ajith
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, India
| | - Olivia Harrod
- International Marine Climate Change Centre, The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Cefas Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Danja Hoehn
- International Marine Climate Change Centre, The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Cefas Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Richard Harrod
- International Marine Climate Change Centre, The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Cefas Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Bryony L Townhill
- International Marine Climate Change Centre, The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Cefas Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, United Kingdom
| |
Collapse
|
3
|
El-Kahawy RM, Mabrouk MS. Benthic foraminifera as bioindicators for the heavy metals in the severely polluted Hurghada Bay, Red Sea coast, Egypt. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27242-4. [PMID: 37148519 DOI: 10.1007/s11356-023-27242-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/22/2023] [Indexed: 05/08/2023]
Abstract
Twenty-nine sediment samples were collected from the Hurghada Bay, a heavily polluted bay on the Red Sea of Egypt, to inspect the environmental quality status and anthropogenic consequences on benthic foraminifera. Some foraminiferal species showed deformations in their apertures and coiling directions as a response to environmental stresses. In addition, the FoRAM index, an index used for evaluating the growth of coral reefs, indicated a hazard in the proximity of nearshore stations. To elucidate the relationships between the biological response and chemistry of sediments, eight heavy metals concentrations (Cu, Cd, Zn, Pb, As, Cr, Ni, and Mn) were analyzed using inductively coupled plasma-atomic emission spectrometers (ICP-AES). Interestingly, two groups of benthic foraminiferal associations were illustrated using multivariate statistical analyses. Group I have extremely high heavy metal concentrations, an enriched total organic matter (TOM)%, high deformation percentages, and mud content. Moreover, it is dominated by Ammonia tepida which is regarded as an opportunistic species. Group II includes low to moderately polluted stations, highly enriched living foraminiferal assemblages, and is dominated by the sensitive rotaliids Neorotalia calcar and Amphistegina lobifera. Alternatively, four geochemical indices, EF, CF, Igeo, and PLI, are used to assess the contamination level that shown ominous spots for the nearshore stations of the Hurghada Bay. The pollution indices (HQ and HI) were also conducted to evaluate the risks of carcinogenic heavy metals on human health. Our findings demonstrated that ingestion and dermal exposure have greater carcinogenic hazards for adults and children than inhalation. The lifetime carcinogenic risk (LCR) is significantly higher than the permissible limit and follows this order: Pb > As > Cr > Cd > Ni. To that end, developing strategies to lessen the negative impact of pollution on human health and/or the Red Sea's biodiversity is an inevitable issue in the present day and future.
Collapse
Affiliation(s)
- Ramadan M El-Kahawy
- Geology Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt.
| | - Mohamed S Mabrouk
- Geology Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| |
Collapse
|
4
|
Sahoo MM, Swain JB. Investigation and comparative analysis of ecological risk for heavy metals in sediment and surface water in east coast estuaries of India. MARINE POLLUTION BULLETIN 2023; 190:114894. [PMID: 37018906 DOI: 10.1016/j.marpolbul.2023.114894] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/09/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
The sediments and surface water from 8 stations each from Dhamara and Paradeep estuarine areas were sampled for investigation of heavy metals, Cd, Cu, Pb, Mn, Ni, Zn, Fe, and Cr contamination. The objective of the sediment and surface water characterization is to find the existing spatial and temporal intercorrelation. The sediment accumulation index (Ised), enrichment index (IEn), ecological risk index (IEcR) and probability heavy metals (p-HMI) reveal the contamination status with Mn, Ni, Zn, Cr, and Cu showing permissible (0 ≤ Ised ≤ 1, IEn ˂ 2, IEcR ≤ 150) to moderate (1 ≤ Ised ≤ 2, 40 ≤ Rf ≤ 80) contamination. The p-HMI reflects the range from excellent (p-HMI = 14.89-14.54) to fair (p-HMI = 22.31-26.56) in off shore stations of the estuary. The spatial patterns of the heavy metals load index (IHMc) along the coast lines indicate that the pollution hotspots are progressively divulged to trace metals pollution over time. Heavy metal source analysis coupled with correlation analysis and principal component analysis (PCA) was used as a data reduction technique, which reveals that the heavy metal pollution in marine coastline might originate from redox reactions (FeMn coupling) and anthropogenic sources.
Collapse
|