1
|
Landwehr KR, Mead-Hunter R, O'Leary RA, Kicic A, Mullins BJ, Larcombe AN. The respiratory health effects of acute in vivo diesel and biodiesel exhaust in a mouse model. CHEMOSPHERE 2024; 362:142621. [PMID: 38880256 DOI: 10.1016/j.chemosphere.2024.142621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Biodiesel, a renewable diesel fuel that can be created from almost any natural fat or oil, is promoted as a greener and healthier alternative to commercial mineral diesel without the supporting experimental data to back these claims. The aim of this research was to assess the health effects of acute exposure to two types of biodiesel exhaust, or mineral diesel exhaust or air as a control in mice. Male BALB/c mice were exposed for 2-hrs to diluted exhaust obtained from a diesel engine running on mineral diesel, Tallow biodiesel or Canola biodiesel. A room air exposure group was used as a control. Twenty-four hours after exposure, a variety of respiratory related end point measurements were assessed, including lung function, responsiveness to methacholine and airway and systemic immune responses. RESULTS Tallow biodiesel exhaust exposure resulted in the greatest number of significant effects compared to Air controls, including increased airway hyperresponsiveness (178.1 ± 31.3% increase from saline for Tallow biodiesel exhaust exposed mice compared to 155.8 ± 19.1 for Air control), increased airway inflammation (63463 ± 13497 cells/mL in the bronchoalveolar lavage of Tallow biodiesel exhaust exposed mice compared to 40561 ± 11800 for Air exposed controls) and indications of immune dysregulation. In contrast, exposure to Canola biodiesel exhaust resulted in fewer significant effects compared to Air controls with a slight increase in airway resistance at functional residual capacity and indications of immune dysregulation. Exposure to mineral diesel exhaust resulted in significant effects between that of the two biodiesels with increased airway hyperresponsiveness and indications of immune dysregulation. CONCLUSION These data show that a single, brief exposure to biodiesel exhaust can result in negative health impacts in a mouse model, and that the biological effects of exposure change depending on the feedstock used to make the biodiesel.
Collapse
Affiliation(s)
- Katherine R Landwehr
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA, 6009, Australia.
| | - Ryan Mead-Hunter
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia
| | - Rebecca A O'Leary
- Department of Primary Industries and Regional Development, Perth, WA, 6151, Australia
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA, 6009, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Perth, WA, 6009, Australia; Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, WA, 6009, Australia
| | - Benjamin J Mullins
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia
| | - Alexander N Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA, 6009, Australia
| |
Collapse
|
2
|
Daniel J, Schönberger Alvarez AA, te Heesen P, Lehrheuer B, Pischinger S, Hollert H, Roß-Nickoll M, Du M. Air-liquid interface exposure of A549 human lung cells to characterize the hazard potential of a gaseous bio-hybrid fuel blend. PLoS One 2024; 19:e0300772. [PMID: 38913629 PMCID: PMC11195957 DOI: 10.1371/journal.pone.0300772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024] Open
Abstract
Gaseous and semi-volatile organic compounds emitted by the transport sector contribute to air pollution and have adverse effects on human health. To reduce harmful effects to the environment as well as to humans, renewable and sustainable bio-hybrid fuels are explored and investigated in the cluster of excellence "The Fuel Science Center" at RWTH Aachen University. However, data on the effects of bio-hybrid fuels on human health is scarce, leaving a data gap regarding their hazard potential. To help close this data gap, this study investigates potential toxic effects of a Ketone-Ester-Alcohol-Alkane (KEAA) fuel blend on A549 human lung cells. Experiments were performed using a commercially available air-liquid interface exposure system which was optimized beforehand. Then, cells were exposed at the air-liquid interface to 50-2000 ppm C3.7 of gaseous KEAA for 1 h. After a 24 h recovery period in the incubator, cells treated with 500 ppm C3.7 KEAA showed significant lower metabolic activity and cells treated with 50, 250, 500 and 1000 ppm C3.7 KEAA showed significant higher cytotoxicity compared to controls. Our data support the international occupational exposure limits of the single KEAA constituents. This finding applies only to the exposure scenario tested in this study and is difficult to extrapolate to the complex in vivo situation.
Collapse
Affiliation(s)
- Jonas Daniel
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | | | - Pia te Heesen
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | - Bastian Lehrheuer
- TME—Chair of Thermodynamics of Mobile Energy Conversion Systems, RWTH Aachen University, Aachen, Germany
| | - Stefan Pischinger
- TME—Chair of Thermodynamics of Mobile Energy Conversion Systems, RWTH Aachen University, Aachen, Germany
| | - Henner Hollert
- Department Evolutionary Ecology & Environmental Toxicology (E3T), Faculty Biological Sciences (FB15), Goethe University Frankfurt, Frankfurt, Germany
- Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Martina Roß-Nickoll
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | - Miaomiao Du
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
3
|
Gerber LS, de Leijer DCA, Rujas Arranz A, Lehmann JMML, Verheul ME, Cassee FR, Westerink RHS. In vitro neurotoxicity of particles from diesel and biodiesel fueled engines following direct and simulated inhalation exposure. ENVIRONMENT INTERNATIONAL 2024; 184:108481. [PMID: 38330748 DOI: 10.1016/j.envint.2024.108481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Combustion-derived particulate matter (PM) is a major source of air pollution. Efforts to reduce diesel engine emission include the application of biodiesel. However, while urban PM exposure has been linked to adverse brain effects, little is known about the direct effects of PM from regular fossil diesel (PMDEP) and biodiesel (PMBIO) on neuronal function. Furthermore, it is unknown to what extent the PM-induced effects in the lung (e.g., inflammation) affect the brain. This in vitro study investigates direct and indirect toxicity of PMDEP and PMBIO on the lung and brain and compared it with effects of clean carbon particles (CP). PM were generated using a common rail diesel engine. CP was sampled from a spark generator. First, effects of 48 h exposure to PM and CP (1.2-3.9 µg/cm2) were assessed in an in vitro lung model (air-liquid interface co-culture of Calu-3 and THP1 cells) by measuring cell viability, cytotoxicity, barrier function, inflammation, and oxidative and cell stress. None of the exposures caused clear adverse effects and only minor changes in gene expression were observed. Next, the basal medium was collected for subsequent simulated inhalation exposure of rat primary cortical cells. Neuronal activity, recorded using microelectrode arrays (MEA), was increased after acute (0.5 h) simulated inhalation exposure. In contrast, direct exposure to PMDEP and PMBIO (1-100 µg/mL; 1.2-119 µg/cm2) reduced neuronal activity after 24 h with lowest observed effect levels of respectively 10 µg/mL and 30 µg/mL, indicating higher neurotoxic potency of PMDEP, whereas neuronal activity remained unaffected following CP exposure. These findings indicate that combustion-derived PM potently inhibit neuronal function following direct exposure, while the lung serves as a protective barrier. Furthermore, PMDEP exhibit a higher direct neurotoxic potency than PMBIO, and the data suggest that the neurotoxic effects is caused by adsorbed chemicals rather than the pure carbon core.
Collapse
Affiliation(s)
- Lora-Sophie Gerber
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Dirk C A de Leijer
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Andrea Rujas Arranz
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jonas M M L Lehmann
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Meike E Verheul
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Flemming R Cassee
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Remco H S Westerink
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
4
|
Jetton TL, Galbraith OT, Peshavaria M, Bonney EA, Holmén BA, Fukagawa NK. Sex-specific metabolic adaptations from in utero exposure to particulate matter derived from combustion of petrodiesel and biodiesel fuels. CHEMOSPHERE 2024; 346:140480. [PMID: 37879369 PMCID: PMC10841900 DOI: 10.1016/j.chemosphere.2023.140480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Maternal exposure to particulate matter derived from diesel exhaust has been shown to cause metabolic dysregulation, neurological problems, and increased susceptibility to diabetes in the offspring. Diesel exhaust is a major source of air pollution and the use of biodiesel (BD) and its blends have been progressively increasing throughout the world; however, studies on the health impact of BD vs. petrodiesel combustion-generated exhaust have been controversial in part, due to differences in the chemical and physical nature of the associated particulate matter (PM). To explore the long-term impact of prenatal exposure, pregnant mice were exposed to PM generated by combustion of petrodiesel (B0) and a 20% soy BD blend (B20) by intratracheal instillation during embryonic days 9-17 and allowed to deliver. Offspring were then followed for 52 weeks. We found that mother's exposure to B0 and B20 PM manifested in striking sex-specific phenotypes with respect to metabolic adaptation, maintenance of glucose homeostasis, and medial hypothalamic glial cell makeup in the offspring. The data suggest PM exposure limited to a narrower critical developmental window may be compensated for by the mother and/or the fetus by altered metabolic programming in a marked sex-specific and fuel-derived PM-specific manner, leading to sex-specific risk for diseases related to environmental exposure later in life.
Collapse
Affiliation(s)
- Thomas L Jetton
- From the Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, USA.
| | - Oban T Galbraith
- From the Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, USA
| | - Mina Peshavaria
- From the Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, USA
| | | | - Britt A Holmén
- Larner College of Medicine, Department of Civil & Environmental Engineering, College of Engineering and Mathematical Sciences, USA
| | - Naomi K Fukagawa
- From the Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, USA; University of Vermont, Burlington, VT 05405, USA; USDA-ARS, Beltsville Human Nutrition Research Center, Beltsville, MD 20705-2350, USA
| |
Collapse
|
5
|
Gupta P, Sahoo PC, Sandipam S, Gupta RP, Kumar M. Fermentation of biodiesel-derived crude glycerol to 1,3-propanediol with bio-wastes as support matrices: Polynomial prediction model. Enzyme Microb Technol 2023; 170:110292. [PMID: 37536048 DOI: 10.1016/j.enzmictec.2023.110292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
Biodiesel production from used cooking oil is sustainable alternative, for bio-energy production. The process generates residual crude glycerol (RCG) as the major energy-rich waste which can be used to produce various bio-based chemicals like 1,3-propanediol (1,3-PDO) through biotechnological interventions. This RCG contains several impurities like methanol, soap, organic materials, salts non-transesterified fatty acids and metals in varied concentrations. These impurities significantly affect yield and productivity of the bio-process due to their marked microbial toxicity. In this work, previously isolated Clostridium butyricum L4 was immobilized on various abundantly available cheap bio-wastes (like rice straw, activated carbon and corn cob) to explore advantages offered and improve tolerance to various feed impurities. Amongst these, shredded rice straw was found most suitable candidate for immobilization and results in maximum improvement in 1,3-PDO production (18.4%) with highest porosity (89.28%), lowest bulk density (194.48Kg/m3), and highest cellular biofilm density (CFU/g-8.4 ×1010) amongst the three matrices. For practical purposes, recyclability was evaluated and it was concluded that even after reusing for five successive cycles the production retained to ∼82.4%. Subsequently, polynomial model was developed using 30 runs central composite factorial design experiments having coefficient of regression (R²) as 0.9520, in order to predict yields under different immobilization conditions for 1,3-PDO production. Plackett-Burman was employed (Accuracy= 99.17%) to screen significant toxic impurities. Based on statistical analysis six impurities were found to be significantly influential on PDO production in adverse manner. With negative coefficient of estimate (COE) varying in decreasing order: Linoleic acid >Oleic acid >Stearic acid >NaCl>K2SO4 >KCl. The study illustrates practical application for repurposing waste glycerol generated from biodiesel plants, thus developing improved agnostic process along with yield production models.
Collapse
Affiliation(s)
- Pragya Gupta
- Indian Oil Corporation Limited, R&D Centre, Sector 13, Faridabad 121007, Haryana, India
| | - P C Sahoo
- Indian Oil Corporation Limited, R&D Centre, Sector 13, Faridabad 121007, Haryana, India
| | - Srikanth Sandipam
- Indian Oil Corporation Limited, R&D Centre, Sector 13, Faridabad 121007, Haryana, India
| | - Ravi Prakash Gupta
- Indian Oil Corporation Limited, R&D Centre, Sector 13, Faridabad 121007, Haryana, India
| | - Manoj Kumar
- Indian Oil Corporation Limited, R&D Centre, Sector 13, Faridabad 121007, Haryana, India.
| |
Collapse
|