1
|
Aytaç E, Khanzada NK, Ibrahim Y, Khayet M, Hilal N. Reverse Osmosis Membrane Engineering: Multidirectional Analysis Using Bibliometric, Machine Learning, Data, and Text Mining Approaches. MEMBRANES 2024; 14:259. [PMID: 39728709 DOI: 10.3390/membranes14120259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Membrane engineering is a complex field involving the development of the most suitable membrane process for specific purposes and dealing with the design and operation of membrane technologies. This study analyzed 1424 articles on reverse osmosis (RO) membrane engineering from the Scopus database to provide guidance for future studies. The results show that since the first article was published in 1964, the domain has gained popularity, especially since 2009. Thin-film composite (TFC) polymeric material has been the primary focus of RO membrane experts, with 550 articles published on this topic. The use of nanomaterials and polymers in membrane engineering is also high, with 821 articles. Common problems such as fouling, biofouling, and scaling have been the center of work dedication, with 324 articles published on these issues. Wang J. is the leader in the number of published articles (73), while Gao C. is the leader in other metrics. Journal of Membrane Science is the most preferred source for the publication of RO membrane engineering and related technologies. Author social networks analysis shows that there are five core clusters, and the dominant cluster have 4 researchers. The analysis of sentiment, subjectivity, and emotion indicates that abstracts are positively perceived, objectively written, and emotionally neutral.
Collapse
Affiliation(s)
- Ersin Aytaç
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Department of Environmental Engineering, Zonguldak Bülent Ecevit University, 67100 Zonguldak, Türkiye
| | - Noman Khalid Khanzada
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi 129188, United Arab Emirates
| | - Yazan Ibrahim
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi 129188, United Arab Emirates
- Chemical and Biomolecular Engineering Division, New York University, Brooklyn, NY 11201, USA
| | - Mohamed Khayet
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Madrid Institute for Advanced Studies of Water (IMDEA Water Institute), Avda. Punto Com N° 2, 28805 Madrid, Spain
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|
2
|
Alnumani A, Abutaleb A, Park B, Mubashir M. Recent advancement on water filtration membranes: Navigating biofouling challenges. ENVIRONMENTAL RESEARCH 2024; 251:118615. [PMID: 38437904 DOI: 10.1016/j.envres.2024.118615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
This study investigates the field of antifouling membranes for water filtration and desalination applications, specifically focusing on two-dimensional materials. The study examines the importance of these membranes in the context of climate change and its effects on coastal ecosystems. The occurrence of biofouling in seawater desalination membranes is closely connected to intricate processes influenced by factors such as water quality, microbial communities, hydrodynamics, and membrane properties. Microorganism adhesion initiates the process, which then advances into irreversible attachment and the creation of biofilm. Detached pieces contribute to the perpetuation of fouling. Biofouling is caused by a variety of biomaterials and organics, including bacteria, extracellular polymeric substances (EPS), proteins, and humic compounds. Innovative methods such as surface alterations using two-dimensional materials like graphene and graphene oxide, as well as the use of biofouling-resistant materials, provide promising possibilities. These materials have antifouling characteristics, making them environmentally beneficial options that reduce the need for chemical cleaning. Their application improves the water treatment process by preventing fouling and enhancing membrane performance. Real-world research applications can enhance and optimize these tactics to effectively reduce biofouling in seawater desalination systems, hence improving efficiency and sustainability. This is particularly important in light of climate change and its impact on coastal ecosystems. The findings obtained from the literature review emphasise the utmost significance of tackling biofouling in the face of a changing environment, particularly with regard to microorganisms. Important factors to consider are the selection of coating materials, the implementation of environmentally friendly cleaning solutions made from natural chemicals, and the improvement of pretreatment systems. Green cleaning agents are important eco-friendly alternatives to typical biocides, as they possess antibacterial, antifungal, and antifouling capabilities. Given the existence of climate change, these observations serve as a basis for promoting environmentally friendly methods in water treatment technology.
Collapse
Affiliation(s)
- Ammar Alnumani
- Water Technologies Innovation Institute & Research Advancement, Saline Water Conversion Corporation, WTIIRA-SWCC, Jubail, 35417, Saudi Arabia.
| | - Abdulrahman Abutaleb
- Water Technologies Innovation Institute & Research Advancement, Saline Water Conversion Corporation, WTIIRA-SWCC, Jubail, 35417, Saudi Arabia.
| | - Byungsung Park
- Water Technologies Innovation Institute & Research Advancement, Saline Water Conversion Corporation, WTIIRA-SWCC, Jubail, 35417, Saudi Arabia
| | - Muhammad Mubashir
- Water Technologies Innovation Institute & Research Advancement, Saline Water Conversion Corporation, WTIIRA-SWCC, Jubail, 35417, Saudi Arabia
| |
Collapse
|
3
|
Shen W, Zhang H, Li X, Qi D, Liu R, Kang G, Liu J, Li N, Zhang S, Hu S. Pathogens and antibiotic resistance genes during the landfill leachate treatment process: Occurrence, fate, and impact on groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:165925. [PMID: 37544439 DOI: 10.1016/j.scitotenv.2023.165925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/08/2023]
Abstract
Landfill leachate is an essential source of pathogens and antibiotic resistance genes (ARGs) in the environment. However, information on the removal behavior of pathogens and ARGs during the leachate treatment and the impact on surrounding groundwater is limited. In this study, we investigated the effects of leachate treatment on the removal of pathogens and ARGs with metagenomic sequencing, as well as the impact of landfill effluent on groundwater. It is shown that the leachate treatment could not completely remove pathogens and ARGs. Twenty-nine additional pathogens and twenty-nine ARGs were newly identified in the landfill effluent. The relative abundance of pathogens and multiple antibiotic resistance genes decreased after ultrafiltration but relative abundance increased after reverse osmosis. In addition, the relative abundances of Acinetobacter baumannii, Erwinia amylovora, Escherichia coli, Fusarium graminearum, Klebsiella pneumoniae, and Magnaporthe oryzae, as well as mdtH, VanZ, and blaOXA-53 increased significantly in the landfill effluent compared to the untreated leachate. The relative abundance of some mobile genetic elements (tniA, tniB, tnpA, istA, IS91) in leachate also increased after ultrafiltration and reverse osmosis. The size of pathogens, the size and properties of ARGs and mobile genetic elements, and the materials of ultrafiltration and reverse osmosis membranes may affect the removal effect of pathogens, ARGs and mobile genetic elements in leachate treatment process. Interestingly, the pathogens and ARGs in landfill effluent were transferred to groundwater according to SourceTracker. The ARGs, mobile genetic elements, and pathogens that are difficult to remove in the leachate treatment process, provide a reference for optimizing the leachate treatment process and improving the control of pathogens and ARGs. Furthermore, this study clarifies the effect of landfill leachate sources of pathogens and ARGs in groundwater.
Collapse
Affiliation(s)
- Weitao Shen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Houhu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xuejian Li
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; Department of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dan Qi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Ran Liu
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Guodong Kang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jinglong Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Nan Li
- Zhongda Hospital Southeast University, Nanjing 210009, China
| | - Shenghu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Shuangqing Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai 200233, China.
| |
Collapse
|