1
|
Rybarczyk P, Cichon K, Kucharska K, Dobrzyniewski D, Szulczyński B, Gębicki J. Packing Incubation and Addition of Rot Fungi Extracts Improve BTEX Elimination from Air in Biotrickling Filters. Molecules 2024; 29:4431. [PMID: 39339426 PMCID: PMC11434076 DOI: 10.3390/molecules29184431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The removal of benzene, toluene, ethylbenzene, and xylene (BTEX) from air was investigated in two similar biotrickling filters (BTFs) packed with polyurethane (PU) foam, differing in terms of inoculation procedure (BTF A was packed with pre-incubated PU discs, and BTF B was inoculated via the continuous recirculation of a liquid inoculum). The effects of white rot fungi enzyme extract addition and system responses to variable VOC loading, liquid trickling patterns, and pH were studied. Positive effects of both packing incubation and enzyme addition on biotrickling filtration performance were identified. BFF A exhibited a shorter start-up period (approximately 20 days) and lower pressure drop (75 ± 6 mm H2O) than BTF B (30 days; 86 ± 5 mm H2O), indicating the superior effects of packing incubation over inoculum circulation during the biotrickling filter start-up. The novel approach of using white rot fungi extracts resulted in fast system recovery and enhanced process performance after the BTF acidification episode. Average BTEX elimination capacities of 28.8 ± 0.4 g/(m3 h) and 23.1 ± 0.4 g/(m3 h) were reached for BTF A and BTF B, respectively. This study presents new strategies for controlling and improving the abatement of BTEX in biotrickling filters.
Collapse
Affiliation(s)
- Piotr Rybarczyk
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Street, 80-233 Gdańsk, Poland
| | - Krzysztof Cichon
- Waste Utilization Facility Ltd. in Gdańsk, Jabłoniowa 55 Street, 80-180 Gdańsk, Poland
- Implementation Doctoral School, Gdańsk University of Technology, Narutowicza 11/12 Street, 80-233 Gdańsk, Poland
| | - Karolina Kucharska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Street, 80-233 Gdańsk, Poland
| | - Dominik Dobrzyniewski
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Street, 80-233 Gdańsk, Poland
| | - Bartosz Szulczyński
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Street, 80-233 Gdańsk, Poland
| | - Jacek Gębicki
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Street, 80-233 Gdańsk, Poland
| |
Collapse
|
2
|
Wang X, Li X, Hao P, Duan X, Gao Y, Liang X. Cellulosimicrobium sp. Strain L1: A Study on the Optimization of the Conditions and Performance of a Combined Biological Trickling Filter for Hydrogen Sulfide Degradation. Microorganisms 2024; 12:1513. [PMID: 39203356 PMCID: PMC11356333 DOI: 10.3390/microorganisms12081513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Sulfide is a toxic and hazardous substance in the agricultural environment, which can cause damage to humans and livestock when exposed to large amounts of air. In this study, we performed one-factor optimization of the culture conditions and culture fractions of the Cellulosimicrobium sp. strain L1 and combined it with a biological trickling filter cell for the degradation of hydrogen sulfide for 24 consecutive days. The degradation effect of strain L1 and the biological trickling filter (BTF) on hydrogen sulfide was investigated, and the changes in intermediate products in the degradation process were briefly analyzed. The results showed that strain L1 had the highest conversion efficiency when incubated with 3 g/L sucrose as the carbon source and 1 g/L NH4Cl as the nitrogen source at a temperature of 35 °C, an initial pH of 5, and a NaCl concentration of 1%. The concentration of thiosulfate increased and then decreased during the degradation process, and the concentration of sulfate increased continuously. When strain L1 was applied to the biological trickling filter, it could degrade 359.53 mg/m3 of H2S. This study provides a deeper understanding of sulfide degradation in biological trickling filters and helps promote the development of desulfurization technology and the treatment of malodorous gasses produced by the accumulation of large quantities of livestock manure.
Collapse
Affiliation(s)
- Xuechun Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (X.W.)
| | - Xintian Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (X.W.)
| | - Peng Hao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (X.W.)
| | - Xinran Duan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (X.W.)
| | - Yunhang Gao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (X.W.)
| | - Xiaojun Liang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry, Yinchuan 750002, China
| |
Collapse
|
3
|
Zhai J, Jiang C, Xue X, Wang H. Biofiltration of toluene and ethyl acetate mixture by a fungal-bacterial biofilter: Performance and community structure analysis. Heliyon 2024; 10:e31984. [PMID: 38882306 PMCID: PMC11176807 DOI: 10.1016/j.heliyon.2024.e31984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/30/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
The inhibitory effect of hydrophilic volatile organic compounds (VOCs) on hydrophobic VOCs removal was found to be efficiently reduced by the fungal-bacterial biofilters (F&B-BFs) developed in the present study. Overall, the toluene and ethyl acetate mixture removal efficiencies (REs) and elimination capacities (ECs) of F&B-BFs were superior to those of bacterial biofilters (B-BFs). The REs for toluene and ethyl acetate were 32.5 ± 0.8 % and 74.6 ± 1.0 %, respectively, for F&B-BFs, in comparison to 8.0 ± 0.3 % and 60 ± 1.3 % for B-BFs. The ECs for toluene and ethyl acetate were 13.0 g m-3 h-1 and 149.2 g m-3 h-1, respectively, for the F&B-BF, compared to 3.2 g m-3 h-1 and 119.6 g m-3 h-1 for the B-BFs. This was achieved at a constant empty bed residence time (EBRT) of 45 s. F&B-BFs exhibited a superior mineralization efficiencies (MEs) compared to B-BFs for a VOC mixture of toluene and ethyl acetate (≈36.1 % vs ~ 29.6 %). This is attributed to the direct capture of VOCs by the presence of fungi, increased the contact time between VOCs and VOCs-degrading bacteria, and even distribution of VOCs-degrading bacteria in the F&B-BFs. Moreover, compared with B-BFs, the coupling effect of genus Pseudomonas degradation, and unclassified_f_Herpotrichiellaceae and unclassified_p_Ascomycota adsorption of F&B-BF resulted in a reduction in the impact of the presence of hydrophilic VOCs on the removal of hydrophobic VOCs, thereby enhancing the biofiltration performance of mixtures of hydrophilic and hydrophobic VOCs.
Collapse
Affiliation(s)
- Jian Zhai
- Department of Printing and Packaging Engineering, Shanghai Publishing and Printing College, Shanghai, People's Republic of China
| | - Chunhua Jiang
- Department of Printing and Packaging Engineering, Shanghai Publishing and Printing College, Shanghai, People's Republic of China
| | - Xiaojuan Xue
- School of Environmental Engineering, Gansu Forestry Polytechnic, Tianshui, Gansu Province, People's Republic of China
| | - Hai Wang
- School of Environmental Engineering, Gansu Forestry Polytechnic, Tianshui, Gansu Province, People's Republic of China
| |
Collapse
|
4
|
Qin Y, Liu J, Zhang Y, Wu H. Effect of commutation on pressure drop and microbial diversity in a horizontal biotrickling filter for toluene removal. Arch Microbiol 2024; 206:109. [PMID: 38369664 DOI: 10.1007/s00203-024-03845-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/20/2024]
Abstract
A horizontal biotrickling filter (HBTF) was designed to understand the toluene removal process and microbial community structures. The start-up time of the HBTF, immobilized by the dominant fungi was only about 6 days and the toluene removal efficiency was found to be more than 95% when the inlet toluene concentration remained at around 1560.0 mg/m3. In the stable operation stage of the HBTF, based on not greatly reducing the removal efficiency, a simple and convenient periodic commutation was adopted to reduce the pressure drop (△P) and regulate the distribution of microorganisms in the packing area of the HBTF. The △P decreased from about 90 Pa to 10 Pa after the commutation, which indicated its feasibility. The performance of the HBTF was improved by changing the inlet direction of waste gas flow. When the inlet concentration of toluene was about 640 mg/m3, the removal efficiency was nearly 70.0% before commutation and it remained 95.0-98.0% after commutation. Microbial abundance and diversity analysis showed that the corresponding Shannon-Weiner index was 2.73 and 1.84, respectively. The front section of the HBTF, which was exposed to toluene earlier, consistently exhibited higher microbial diversity than that in the back section. Following commutation, microbial diversity decreased in both the front and back sections, with a maximum decline of around 50%. The main fungi treating toluene were Aplanochytrium, Boletellus, and Exophiala.
Collapse
Affiliation(s)
- Yiwei Qin
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, China
- Beijing Fairyland Environmental Technology Co., Ltd., Beijing, 100096, China
| | - Jia Liu
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, China.
| | - Yun Zhang
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Hongmei Wu
- Inner Mongolia Autonomous Region Environmental Monitoring Centre Baotou Sub-Station, Baotou, 014000, China
| |
Collapse
|
5
|
Zamir SM, Rene ER, Veiga MC, Kennes C. Comparative assessment of the performance of one- and two-liquid phase biotrickling filters for the simultaneous abatement of gaseous mixture of methanol, α-pinene, and hydrogen sulfide. CHEMOSPHERE 2023; 341:140022. [PMID: 37657695 DOI: 10.1016/j.chemosphere.2023.140022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/06/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
A gaseous mixture of methanol (M), α-pinene (P), and hydrogen sulfide (H) was treated in one/two-liquid phase biotrickling filters (OLP/TLP-BTFs) at varying inlet concentrations and at an empty bed residence time (EBRT) of 57 s. The performance of TLP-BTF [BTF (A)] improved significantly in terms of M and P removal due to the presence of silicone oil at 5% v/v. The maximum elimination capacities (ECs) of M, P, and H in BTF (A) were obtained as 309, 73, and 56 g m-3 h-1, respectively. While, the maximum ECs achieved in the BTF operated without silicone oil [BTF (B)] were 172, 28, and 21 g m-3 h-1 for M, P, and H removal, respectively. Increasing the inlet concentration of H from 32 to 337 ppm inhibited P removal in both the BTFs. The presence of silicone oil enhanced gas-liquid mass transfer, prevented the BTF from experiencing substrate inhibition effects and allowed reaching high ECs for M and P. The experiments showed promising results for the long-term operation of removal of M, P, and H mixture in a one-stage TLP-BTF with the decreasing negative effects of M and H on P degradation.
Collapse
Affiliation(s)
- Seyed Morteza Zamir
- Biochemical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, P.O. Box 3015, 2611 AX, Delft, the Netherlands
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research - Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E - 15008, A Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research - Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E - 15008, A Coruña, Spain.
| |
Collapse
|