1
|
Pourmadadi M, Aghababaei N, Abdouss M. Photocatalytic activation of peroxydisulfate by UV-LED through rGO/g-C 3N 4/SiO 2 nanocomposite for ciprofloxacin removal: Mineralization, toxicity, degradation pathways, and application for real matrix. CHEMOSPHERE 2024; 359:142374. [PMID: 38763393 DOI: 10.1016/j.chemosphere.2024.142374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/03/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
If trace amounts of antibiotics remain in the environment, they can lead to microbial pathogens becoming resistant to antibiotics and putting ecosystem health at risk. For instance, ciprofloxacin (CIP) can be found in surface and ground waters, suggesting that conventional water treatment technologies are ineffective at removing it. Now, a rGO/g-C3N4/SiO2 nanocomposite was synthesized in this study to activate peroxydisulfate (PDS) under UVA-LED irradiation. UVA-LED/rGO-g-C3N4-SiO2/PDS system performance was evaluated using Ciprofloxacin as an antibiotic. Particularly, rGO/g-C3N4/SiO2 showed superior catalytic activity for PDS activation to remove CIP. Operational variables, reactive species determination, and mechanisms were investigated. 0.85 mM PDS and 0.3 g/L rGO/g-C3N4/SiO2 eliminated 99.63% of CIP in 35 min and mineralized 59.78% in 100 min at pH = 6.18. By scavenging free radicals, bicarbonate ions inhibit CIP degradation. According to the trapping experiments, superoxide (O2•-) was the main active species rather than sulfate (SO4•-) and hydroxyl radicals (•OH). RGO/g-C3N4/SiO2 showed an excellent recyclable capability of up to six cycles. The UVA-LED/rGO-g-C3N4-SiO2/PDS system was also tested under real conditions. The system efficiency was reasonable. By calculating the synergistic factor (SF), this work highlights the benefit of combining composite, UVA-LED, and PDS. UVA-LED/rGO-g-C3N4-SiO2/PDS had also been predicted to be an eco-friendly process based on the results of the ECOSAR program. Consequently, this study provides a novel and durable nanocomposite with supreme thermal stability that effectively mitigates environmental contamination by eliminating antibiotics from wastewater.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- Protein Research Center, Shahid Beheshti University, Tehran, GC, 1983963113, Iran
| | - Nafiseh Aghababaei
- Department of Chemical Engineering, Tafresh University, Tafresh, 39518 79611, Iran.
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, 15875-4413, Tehran, Iran.
| |
Collapse
|
2
|
Liang Y, Zhang L, Huang C, Xiong J, Liu T, Yao S, Zhu H, Yang Q, Zou B, Wang S. New breakthrough in rapid degradation of lignin derivative compounds · A novel high stable and reusable green organic photocatalyst. J Colloid Interface Sci 2024; 662:426-437. [PMID: 38359506 DOI: 10.1016/j.jcis.2024.02.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
The pulp and paper sectors are thriving yet pose significant environmental threats to water bodies, mainly due to the substantial release of pollutants. Lignin-derived compounds are among the most problematic of these contaminants. To address this issue, we present our initial results on utilizing organic semiconductor photocatalysis under visible light for treating lignin-derived compounds. Our investigation has been centered around creating a green and cost-effective organic semiconductor photocatalyst. This catalyst is designed using a structure of bagasse cellulose spheres to support PM6 (poly[(2,6-(4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene))-co-(1,3-di(5-thiophene-2-yl)-5,7-bis(2-ethylhexyl)-benzo[1,2-c:4,5-c']dithiophene-4,8-dione))]: MeIC (3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-cyclopentane-1,3-dione[c]-1-methyl-thiophe))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']-dithiophene)). This photocatalyst demonstrates remarkable efficiency, achieving over 91 % degradation of lignin-derived compounds. The superior photocatalytic performance is attributed to three main factors: (1) The ability of PM6 to broaden MeIC's absorption range from 300 to 800 nm, allowing for effective utilization of visible light; (2) the synergistic interaction between PM6 and MeIC, which ensures compatible energy levels and a vast, evenly spread surface area, promoting charge mobility and extensive donor/acceptor interfaces. This synergy significantly enhances the generation and transport of carriers, resulting in a high production of free radicals that accelerate the decomposition of organic materials; (3) The deployment of PM6:MeIC on biomass-based carriers increases the interaction surface with the organic substances. Notably, PM6: MeIC showcases outstanding durability, with its degradation efficiency remaining between 84 % and 91 % across 100 cycles. This study presents a promising approach for designing advanced photocatalysts aimed at degrading common pollutants in papermaking wastewater.
Collapse
Affiliation(s)
- Yinna Liang
- School of Light Industry Technology and Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Libin Zhang
- School of Light Industry Technology and Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Ciyuan Huang
- School of Light Industry Technology and Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jianhua Xiong
- School of Light Industry Technology and Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Tao Liu
- School of Light Industry Technology and Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Shangfei Yao
- School of Light Industry Technology and Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Hongxiang Zhu
- School of Light Industry Technology and Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Qifeng Yang
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning 530007, China
| | - Bingsuo Zou
- School of Light Industry Technology and Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Shuangfei Wang
- School of Light Industry Technology and Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| |
Collapse
|
3
|
Wang D, Xin S, Dong Y, Sun Z, Li X, Wang Q, Liu G, Liu Y, Xin Y. Heat and carbon co-activated persulfate to regenerate gentamicin-laden activated carbon: Performance, mechanism, and safety assessment. CHEMOSPHERE 2024; 349:140960. [PMID: 38104734 DOI: 10.1016/j.chemosphere.2023.140960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Activated carbon enriched with high concentrations of gentamicin (ACG) was generated in the production process of gentamicin. Inappropriate handling methods for ACG not only squanders carbon resource, but also seriously hinders achieving global carbon neutrality and hazardous to human health. In the present work, thermal and carbon co-activated persulfate method (TC-PS) was developed to regenerate ACG with degrading gentamicin. The results showed that ACG was effectively regenerated by TC-PS, restoring the adsorption performance for gentamicin. When the treatment temperature was 80 °C, the persulfate dosage was 20 mM and the initial pH was 3.0, the degradation efficiency of gentamicin reached 100%. The HO• and SO4•- were the major reactive species for gentamicin degradation. The possible degradation routes of gentamicin were proposed and the safety assessment indicated that the produced intermediates during the regeneration process of ACG by TC-PS have insignificant impact on the biological and ecological environment.
Collapse
Affiliation(s)
- Dong Wang
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shuaishuai Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Yanan Dong
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhihao Sun
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaofen Li
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qianwen Wang
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guocheng Liu
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yucan Liu
- School of Civil Engineering, Yantai University, Yantai, 264005, China
| | - Yanjun Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
4
|
Liu X, Hao Z, Fang C, Pang K, Yan J, Huang Y, Huang D, Astruc D. Using waste to treat waste: facile synthesis of hollow carbon nanospheres from lignin for water decontamination. Chem Sci 2023; 15:204-212. [PMID: 38131073 PMCID: PMC10732141 DOI: 10.1039/d3sc05275c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Lignin, the most abundant natural material, is considered as a low-value commercial biomass waste from paper mills and wineries. In an effort to turn biomass waste into a highly valuable material, herein, a new-type of hollow carbon nanospheres (HCNs) is designed and synthesized by pyrolysis of biomass dealkali lignin, as an efficient nanocatalyst for the elimination of antibiotics in complex water matrices. Detailed characterization shows that HCNs possess a hollow nanosphere structure, with abundant graphitic C/N and surface N and O-containing functional groups favorable for peroxydisulfate (PDS) activation. Among them, HCN-500 provides the maximum degradation rate (95.0%) and mineralization efficiency (74.4%) surpassing those of most metal-based advanced oxidation processes (AOPs) in the elimination of oxytetracycline (OTC). Density functional theory (DFT) calculations and high-resolution mass spectroscopy (HR-MS) were employed to reveal the possible degradation pathway of OTC elimination. In addition, the HCN-500/PDS system is also successfully applied to real antibiotics removal in complex water matrices (e.g. river water and tap water), with excellent catalytic performances.
Collapse
Affiliation(s)
- Xiang Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Zixuan Hao
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Chen Fang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Kun Pang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Jiaying Yan
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Yingping Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Di Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Didier Astruc
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
- ISM, UMR CNRS N°5255, Université de Bordeaux 351 Cours de la Libération, 33405 Talence Cedex France
| |
Collapse
|