1
|
Deng S, Yang Z, Yu X, Li M, Cao H. The reactivity of organic radicals in the performic, peracetic, perpropionic acids-based advanced oxidation process: A case study of sulfamethoxazole. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135033. [PMID: 38941837 DOI: 10.1016/j.jhazmat.2024.135033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Advanced oxidation processes (AOPs) based on peracetic acid (PAA) displayed great potential in removing emerging contaminants by generating HO• and organic radicals. Performic and perpropionic acids (PFA and PPA) also act as disinfectants, but their application potential has not been investigated yet. Here, we investigated the degradation mechanism and kinetics of sulfamethoxazole (SMX) by HO•, RC(O)O• species (including HC(O)O•, CH3C(O)O• and CH3CH2C(O)O•) and RC(O)OO• species (including HC(O)OO•, CH3C(O)OO• and CH3CH2C(O)OO•). The results show that the calculated reaction rate constants of SMX follow the order of HC(O)O• > CH3C(O)O• > CH3CH2C(O)O• > HO• > HC(O)OO• > CH3C(O)OO• > CH3CH2C(O)OO•. The reactivity towards SMX is strongly correlated with the redox potentials of reactive radicals. Hence, the RCOO• species play dominant roles in the purification of SMX in PFA/PAA/PPA-based AOPs. The degradation of SMX mainly proceeds via addition at the benzene ring, the hydrogen abstraction from the -NH2 group as well as the single electron transfer reaction. This study highlights the fundamental aspects of PFA, PAA, and PPA in the purification of sulfamethoxazole and enhances the role of organic radicals in the AOPs based on organic peracetic acids.
Collapse
Affiliation(s)
- Siqi Deng
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Zhengqiang Yang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Xinyi Yu
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Mingxue Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Haijie Cao
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Zeng C, Ma Y, Li P, Chen X, Liu H, Deng Z, Mu R, Qi X, Zhang Z. Efficient degradation of sulfadiazine by UV-triggered electron transfer on oxalic acid-functionalized corn straw biochar for activating peroxyacetic acid: Performance, mechanism, and theoretical calculation. BIORESOURCE TECHNOLOGY 2024; 407:131103. [PMID: 39002884 DOI: 10.1016/j.biortech.2024.131103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
A novel UV/oxalic acid functionalized corn straw biochar (OCBC)/peroxyacetic acid (PAA) system was built to degrade sulfadiazine from waters. 94.7 % of SDZ was removed within 30 min by UV/OCBC/PAA. The abundant surface functional groups and persistent free radicals (PFRs) on OCBC were responsible for these performances. Cyclic voltammetry (CV) and other characterization analysis revealed, under UV irradiation, the addition of OCBC served as electron donor, which might promote the reaction of electrons with PAA. The quenching and electron paramagnetic resonance (EPR) tests indicated that R-O•, 1O2 and •OH were generated. Theoretical calculations indicated sulfonamide bridge was vulnerable under the attacks of reactive species. In addition, high removal effect achieved by 5 reuse cycles and different real waters also suggested the sustainability of UV/OCBC/PAA. Overall, this study provided a feasible approach to remove SDZ with high mineralization efficiency, in addition to a potential strategy for resource utilization of corn straw.
Collapse
Affiliation(s)
- Chenyu Zeng
- Xianghu Laboratory, Hangzhou 311231, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yongfei Ma
- Xianghu Laboratory, Hangzhou 311231, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Ping Li
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China.
| | - Xi Chen
- Xianghu Laboratory, Hangzhou 311231, China
| | - Hongtao Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhikang Deng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Rui Mu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Xuebin Qi
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.
| |
Collapse
|
3
|
Liu GC, Yi XH, Chu HY, Wang CC, Gao Y, Wang F, Wang FX, Wang P, Wang JF. Floating MIL-88A(Fe)@expanded perlites catalyst for continuous photo-Fenton degradation toward tetracyclines under artificial light and real solar light. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134420. [PMID: 38691997 DOI: 10.1016/j.jhazmat.2024.134420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
In this work, MIL-88A(Fe) was immobilized onto the expanded perlites to fabricate the floating MIL-88A(Fe)@expanded perlites (M@EP) catalyst via high throughput batch synthesis method under room temperature. The as-prepared M@EP could efficiently activate H2O2 to achieve 100% tetracycline antibiotics (TCs) removal under both artificial low power UV light (UVL) and real sunlight (SL) irradiation. The toxicological evaluation, growth experiment of mung beans and antimicrobial estimation revealed the decreasing aquatic toxicity of the TCs intermediates compared to those of the pristine TCs. A self-designed continuous bed reactor was employed to investigate the long-term operation of the M@EP. The findings demonstrated that the antibiotics mixture can be continuously degraded up to 7 days under UVL and 5 daytimes under SL irradiation, respectively. More importantly, ca. 76.9% and 81.6% of total organic carbon (TOC) removal efficiencies were accomplished in continuous bed reactor under UVL and SL irradiation, respectively. This work advances the immobilized MOFs on floating supports for their practical application in large-scale wastewater purification through advanced oxidation processes. ENVIRONMENTAL IMPLICATION: This work presented the high throughput production and photo-Fenton degradation application of floating MIL-88A(Fe)@expanded perlites (M@EP). Three tetracycline antibiotics (TCs) were selected as model pollutants to test the degradation ability of M@EP in batch experiment and continuous operation under artificial light and solar light. The complete TCs degradation could be accomplished in self-designed device up to 7 d under UV light and 5 d under real solar light. This work tapped a new door to push MOFs-based functional materials in the real water purification.
Collapse
Affiliation(s)
- Guang-Chi Liu
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Xiao-Hong Yi
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Hong-Yu Chu
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China.
| | - Ya Gao
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Fei Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Fu-Xue Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Peng Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Jian-Feng Wang
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical & Chemical Analysis), Beijing 100089, PR China
| |
Collapse
|
4
|
Yao M, Zhang S, Xie M, Zhao L, Zhao RS. Efficient activation of peracetic acid by cobalt modified nitrogen-doped carbon nanotubes for drugs degradation: Performance and mechanism insight. CHEMOSPHERE 2024; 358:142277. [PMID: 38719118 DOI: 10.1016/j.chemosphere.2024.142277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Peracetic acid (PAA) has garnered significant attention as a novel disinfectant owing to its remarkable oxidative capacity and minimal potential to generate byproducts. In this study, we prepared a novel catalyst, denoted as cobalt modified nitrogen-doped carbon nanotubes (Co@N-CNTs), and evaluated it for PAA activation. Modification with cobalt nanoparticles (∼4.8 nm) changed the morphology and structure of the carbon nanotubes, and greatly improved their ability to activate PAA. Co@N-CNTs/PAA catalytic system shows outstanding catalytic degradation ability of antiviral drugs. Under neutral conditions, with a dosage of 0.05 g/L Co@N-CNT-9.8 and 0.25 mM PAA, the removal efficiency of acyclovir (ACV) reached 98.3% within a mere 10 min. The primary reactive species responsible for effective pollutant degradation were identified as acetylperoxyl radicals (CH3C(O)OO•) and acetyloxyl radicals (CH3C(O)O•). In addition, density functional theory (DFT) proved that Co nanoparticles, as the main catalytic sites, were more likely to adsorb PAA and transfer more electrons than N-doped graphene. This study explored the feasibility of PAA degradation of antiviral drugs in sewage, and provided new insights for the application of heterogeneous catalytic PAA in environmental remediation.
Collapse
Affiliation(s)
- Mingya Yao
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan, 250014, China
| | - Shuofeng Zhang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan, 250014, China
| | - Meng Xie
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan, 250014, China.
| | - Lingxi Zhao
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan, 250014, China
| | - Ru-Song Zhao
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan, 250014, China.
| |
Collapse
|
5
|
Yin W, Liu T, Chen J, Zhang L, Ji R, Xu Y, Xu J, Li N, Zhou X, Zhang Y. Using UV/peracetic acid as pretreatment for subsequent bio-treatment of antibiotic-containing wastewater treatment: Mitigating microbial inhibition and antibiotic resistance genes proliferation. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134166. [PMID: 38554511 DOI: 10.1016/j.jhazmat.2024.134166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/27/2024] [Indexed: 04/01/2024]
Abstract
UV/peracetic acid (PAA) treatment presents a promising approach for antibiotic removal, but its effects on microbial community and proliferation of antibiotic resistance genes (ARGs) during the subsequent bio-treatment remain unclear. Thus, we evaluated the effects of the UV/PAA on tetracycline (TTC) degradation, followed by introduction of the treated wastewater into the bio-treatment system to monitor changes in ARG expression and biodegradability. Results demonstrated effective TTC elimination by the UV/PAA system, with carbon-centered radicals playing a significant role. Crucially, the UV/PAA system not only eliminated antibacterial activity but also inhibited potential ARG host growth, thereby minimizing the emergence and dissemination of ARGs during subsequent bio-treatment. Additionally, the UV/PAA system efficiently removed multi-antibiotic resistant bacteria and ARGs from the bio-treatment effluent, preventing ARGs from being released into the environment. Hence, we propose a multi-barrier strategy for treating antibiotic-containing wastewater, integrating UV/PAA pre-treatment and post-disinfection with bio-treatment. The inhibition of ARGs transmission by the integrated system was verified through actual soil testing, confirming its effectiveness in preventing ARGs dissemination in the surrounding natural ecosystem. Overall, the UV/PAA treatment system offers a promising solution for tackling ARGs challenges by controlling ARGs proliferation at the source and minimizing their release at the end of the treatment process.
Collapse
Affiliation(s)
- Wenjun Yin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tongcai Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| | - Longlong Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ruicheng Ji
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jiao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Nan Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| |
Collapse
|
6
|
Yang Y, Jiang W, Guo H. Elimination of Chlorella using peracetic acid activated by dielectric barrier discharge plasma: Mechanism and cell deactivation process. BIORESOURCE TECHNOLOGY 2024; 400:130651. [PMID: 38570100 DOI: 10.1016/j.biortech.2024.130651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 04/05/2024]
Abstract
Excessive proliferation of algae in water depletes dissolved oxygen, resulting in the demise of aquatic life and environmental damage. This study delves into the effectiveness of the dielectric barrier discharge (DBD) plasma activated peracetic acid (PAA) system in deactivating Chlorella. Within 15 min, the algae removal effectiveness reached 89 % under ideal trial conditions. DBD plasma activation of PAA augmented the concentration of reactive species such as ·OH, 1O2, and organic radicals (RO·) in the solution, which are involved in the process of cell inactivation. Reactive oxygen species (ROS) within Chlorella cells continued to rise as a result of treatment-induced damage to the morphological structure and cell membrane of the organism. DNA and chlorophyll-a (Chl-a), were oxidized and destroyed by these invasive active compounds. This study presents an efficient advanced oxidation method to destroy algal cells and adds an alternative strategy for algal control in areas where eutrophication occurs.
Collapse
Affiliation(s)
- Yexiang Yang
- College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Wenxuan Jiang
- College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - He Guo
- College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
7
|
Shao Y, Li S, Wei X, Zhao Y, Liang J, Li X. The diverse roles of halide ions in the degradation of bisphenol A via UV/peracetic acid process at different pH values: Radical chemistry, and transformation pathways. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133053. [PMID: 38113739 DOI: 10.1016/j.jhazmat.2023.133053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/19/2023] [Accepted: 11/19/2023] [Indexed: 12/21/2023]
Abstract
UV/Peracetic Acid (UV/PAA), as an innovative advanced oxidation process (AOP), is employed to treat bisphenol A (BPA) in water through the generation of hydroxyl radicals (•OH) and carbon-centered radicals (R-C•). The impact of halide ions (Cl-; Br-; I-) on the efficiency of UV/PAA was investigated for the first time under varying pH levels. The presence of halide ions exerted an influence on the reactivity of •OH and R-C•, exhibiting varying degrees of impact across different pH conditions. It was discovered that pH exerts a significant influence on its efficiency, with optimal removal performance observed at a pH 9. The degradation of BPA was inhibited by Cl- through the generation of reactive chlorine species (RCS), which triggers the interconversion between •OH and R-C•. Reactive bromine species (RBS) were produced in the presence of Br-, facilitating BPA degradation and generating HOBr as a supplementary source of •OH radicals. I- primarily generate reactive iodine species (RIS) through photolysis, which facilitates the degradation of BPA. The transformation of BPA involves hydroxylation, demethylation, halogenation, and cleavage reactions to form various products and pathways. The toxicity test demonstrates that the UV/PAA treatment of BPA exhibits lower toxicity, thereby indicating its environmentally friendly.
Collapse
Affiliation(s)
- Yanan Shao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Shuai Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Xue Wei
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Yanlan Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Xiaodong Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
8
|
Wang Z, Zhai Y, Zhou Y, Huang C, Zhang X, Xu M. The impact of dissolved organic matter on the photodegradation of tetracycline in the presence of microplastics. CHEMOSPHERE 2024; 349:140784. [PMID: 38006920 DOI: 10.1016/j.chemosphere.2023.140784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/31/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
Microplastics (MPs), an emerging class of pollutants, significantly impact the photoconversion dynamics of tetracycline (TC). But the effect of prevalent dissolved organic matter (DOM) on TC photodegradation in the presence of MPs remains a gap in current research. In this study, the photoconversion behavior and mechanism of TC under simulated sunlight conditions were systematically investigated, both in the presence of DOM and in combination with polystyrene (PS) MPs. The results demonstrated that both DOM and MPs enhanced the photodegradation of TC when compared to its direct degradation. However, DOM, particularly humic acid (HA, 10 mg/L), exhibited a more pronounced enhancing effect on TC photodegradation within 1 h reaction, regardless of the presence or absence of MPs, reaching up to 80%. In reaction systems involving TC-HA and TC-HA-PS, the primary contributors to TC degradation were direct photolysis and HA photosensitization (free radical reactions). Conversely, photosensitization effects were not significant in the presence of fulvic acid (FA). Furthermore, even under dark reaction conditions, HA exhibited a 10% degradation effect on TC. Quenching experiments and electron spin resonance (ESR) results indicate that dark reaction processes involve free radical reactions. Additionally, toxicity test results showed a reduction in the acute toxicity of TC photodegradation products, yet the long-term cumulative risks to organisms deserved attention. In general, this investigation significantly advances our understanding of the intricate photoconversion behavior of TC in the presence of coexisting chemical components.
Collapse
Affiliation(s)
- Zhexian Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yunbo Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Yin Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Cheng Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xue Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Min Xu
- Chinese Academy of Environmental Planning, Beijing, 100012, PR China.
| |
Collapse
|