1
|
Qi X, Xiong X, Cai H, Zhang X, Ma Q, Tan H, Guo X, Lv H. Carbon dots-loaded cellulose nanofibrils hydrogel incorporating Bi 2O 3/BiOCOOH for effective adsorption and photocatalytic degradation of lignin. Carbohydr Polym 2024; 346:122601. [PMID: 39245520 DOI: 10.1016/j.carbpol.2024.122601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
A novel photocatalytic adsorbent, a cellulose nanofibrils based hydrogel incorporating carbon dots and Bi2O3/BiOCOOH (designated as CCHBi), was developed to address lignin pollution. CCHBi exhibited an adsorption capacity of 435.0 mg/g, 8.9 times greater than that of commercial activated carbon. This enhanced adsorption performance was attributed to the 3D porous structure constructed using cellulose nanofibrils (CNs), which increased the specific surface area and provided additional sorption sites. Adsorption and photocatalytic experiments showed that CCHBi had a photocatalytic degradation rate constant of 0.0140 min-1, 3.1 times higher than that of Bi2O3/BiOCOOH. The superior photocatalytic performance of CCHBi was due to the Z-scheme photocatalytic system constructed by carbon dots-loaded cellulose nanofibrils and Bi2O3/BiOCOOH, which facilitated the separation of photoinduced charge carriers. Additionally, the stability of CCHBi was confirmed through consecutive cycles of adsorption and photocatalysis, maintaining a removal efficiency of 85 % after ten cycles. The enhanced stability was due to the 3D porous structure constructed by CNs, which safeguarded the Bi2O3/BiOCOOH. This study validates the potential of CCHBi for high-performance lignin removal and promotes the application of CNs in developing new photocatalytic adsorbents.
Collapse
Affiliation(s)
- Xinmiao Qi
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiang Xiong
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Haoxuan Cai
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China; College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xuefeng Zhang
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qiang Ma
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Xin Guo
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Huiying Lv
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
2
|
Mousavi-Zadeh S, Poursalehi R, Yourdkhani A. Photocatalytic activity of self-heterojunctioned intermediate phases in HCl protonated and HNO 3 deconjugated g-C 3N 4 nanostructures. Heliyon 2024; 10:e38025. [PMID: 39386764 PMCID: PMC11462491 DOI: 10.1016/j.heliyon.2024.e38025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
This research involved the different acid-treatment conditions of graphitic carbon nitride and its modified nanostructures through thermal polycondensation of urea at various temperatures. X-ray diffraction patterns revealed that processing at a lower temperature than 500 °C resulted in melem and its derivatives, indicating incomplete transformation of urea to g-C3N4. However, treatment at higher temperatures and the HCl acid treatment led to the formation and expansion of g-C3N4 networks, as evidenced by notable differences in peak intensities observed in their Fourier-transform infrared and Raman spectra. Scanning electron microscopy analysis illustrated a transition from the granular morphology of melamine to the layered structure characteristic of g-C3N4. The nanoparticle morphology observed in the HNO3 acid treatment sample was attributed to the deconjugation of nanosheets through the highly oxidative acid medium. The most suitable photocatalytic activity for Methylene Blue (MB) degradation under UV and visible light illumination was observed for the samples prepared at 550 °C and HCl post-processed nanostructures. It is proposed that the enhanced photocatalytic activity observed in these samples is most likely attributed to the reduced recombination of photogenerated charge carriers facilitated by heterojunctions formed between different intermediate phases. These findings highlight the potential of modified g-C3N4 and its derivatives as promising photocatalytic materials for water purification applications.
Collapse
Affiliation(s)
- S.H. Mousavi-Zadeh
- Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
| | - R. Poursalehi
- Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
| | - A. Yourdkhani
- Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Khan SA, Jain M, Pant KK, Ziora ZM, Blaskovich MAT. Photocatalytic degradation of parabens: A comprehensive meta-analysis investigating the environmental remediation potential of emerging pollutant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171020. [PMID: 38369133 DOI: 10.1016/j.scitotenv.2024.171020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
The increasing prevalence of paraben compounds in the environment has given rise to concerns regarding their detrimental impacts on both ecosystems and human health. Over the past few decades, photocatalytic reactions have drawn significant attention as a method to accelerate the otherwise slow degradation of these pollutants. The current study aims to evaluate the current efficacy of the photocatalytic method for degrading parabens in aqueous solutions. An extensive literature review and bibliometric analysis were conducted to identify key research trends and influential areas in the field of photocatalytic paraben degradation. Studies were screened based on the predetermined inclusion and exclusion criteria, which led to 13 studies that were identified as being appropriate for the meta-analysis using the random effects model. Furthermore, experimental parameters such as pH, paraben initial concentration, catalyst dosage, light intensity, and contact time have been reported to have key impacts on the performance of the photocatalytic degradation process. A comprehensive quantitative assessment of these parameters was carried out in this work. Overall, photocatalytic techniques could eliminate parabens with an average degradation efficiency of >80 %. The findings of the Egger's test and the Begg's test were statistically not significant suggesting potential publication bias was not observed. This review provides a holistic understanding of the photocatalytic degradation of parabens and is anticipated to encourage more widespread adoption of photocatalytic procedures as a suitable method for the elimination of parabens from aqueous solutions, opening new avenues for future research in this direction.
Collapse
Affiliation(s)
- Sadaf Aiman Khan
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Marut Jain
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kamal Kishore Pant
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India.
| | - Zyta Maria Ziora
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Mark A T Blaskovich
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
4
|
Hu C, Chen Q, Wu S, Wang J, Zhang S, Chen L. Coupling harmful algae derived nitrogen and sulfur co-doped carbon nanosheets with CeO 2 to enhance the photocatalytic degradation of isothiazolinone biocide. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120621. [PMID: 38520860 DOI: 10.1016/j.jenvman.2024.120621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/21/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024]
Abstract
Removing the algae from water bodies is an effective treatment toward the worldwide frequently occurred harmful algae blooms (HAB), but processing the salvaged algae waste without secondary pollution places another burden on the economy and environment. Herein, a green hydrothermal process without any chemical addition was developed to resource the HAB algae (Microcystis sp.) into autogenous nitrogen and sulfur co-doped carbon nanosheet materials C-CNS and W-CNS, whose alga precursors were collected from pure culture and a wild bloom pond, respectively. After coupling with CeO2, the obtained optimal C-CNS/CeO2 and W-CNS/CeO2 composites photocatalytically degraded 95.4% and 88.2% of the marine pollutant 4,5-Dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) in 90 min, significantly higher than that of pure CeO2 (63.15%). DCOIT degradation on CNS/CeO2 was further conducted under different conditions, including pH value, coexisting cations and anions, and artificial seawater. Although different influences were observed, the removal efficiencies were all above 76%. Along with the ascertained good stability and reusability in five consecutive runs, the great potential of CNS/CeO2 for practical application was validated. UV-vis DRS showed the increased light absorption of CNS/CeO2 in comparison to pure CeO2. PL spectra and photoelectrochemical measurements suggested the lowered charge transfer resistance and thereby inhibited charge recombination of CNS/CeO2. Meanwhile, trapping experiments and electron paramagnetic resonance (EPR) detection verified the primary roles of hydroxyl radical (OH) and superoxide radical (O2-) in DCOIT degradation, as well as their notably augmented generation by CNS. Consequently, a mechanism of CNS enhanced photocatalytic degradation of DCOIT was proposed. The intermediates involved in the reaction were identified by LC-QTOF-MS, giving rise to a deduced degradation pathway for DCOIT. This study offers a new approach for resourceful utilization of the notorious HAB algae waste. Besides that, photocatalytic degradation has been explored as an effective measure to remove DCOIT from the ocean.
Collapse
Affiliation(s)
- Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Qingdi Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Suxin Wu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Jiali Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Shizhen Zhang
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
5
|
Ma D, Wang W, Wang Q, Dai Y, Zhu K, Xu H, Yuan C, Dong P, Xi X. A novel visible-light-driven Z-scheme C 3N 5/BiVO 4 heterostructure with enhanced photocatalytic degradation performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19687-19698. [PMID: 38366321 DOI: 10.1007/s11356-024-32086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/16/2024] [Indexed: 02/18/2024]
Abstract
As a visible-light response semiconductor materials, bismuth vanadate (BiVO4) is extensively applied in photodegradation organic dye field. In this study, we synthesized C3N5 nanosheets and coupled with decahedral BiVO4 to construct a Z-scheme C3N5/BiVO4 heterostructure with close interface contact. By introducing C3N5 into BiVO4, the built Z-scheme transfer pathway provides silky channel for charge carrier migration between different moieties and enables photoexcited electrons and holes accumulated on the surface of BiVO4 and C3N5. The accelerated separation of charge carriers ensures C3N5/BiVO4 heterostructures with a powerful oxidation capacity compared with pure BiVO4. Due to the synergistic effect in Z-scheme heterostructure, the C3N5/BiVO4 demonstrated an improved photodegradation ability of rhodamine B (RhB) and methylene blue (MB) that of bare BiVO4.
Collapse
Affiliation(s)
- Dongqi Ma
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Wuyou Wang
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China.
| | - Qinzheng Wang
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Yelan Dai
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Kai Zhu
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Haocheng Xu
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Cheng Yuan
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Pengyu Dong
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Xinguo Xi
- Key Laboratory for Ecological-Environment Materials of Jiangsu Province, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| |
Collapse
|
6
|
Li YW, Li SZ, Zhao MB, Liu LY, Zhang ZF, Ma WL. Acid-induced tubular g-C 3N 4 for the selective generation of singlet oxygen by energy transfer: Implications for the photocatalytic degradation of parabens in real water environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165316. [PMID: 37414160 DOI: 10.1016/j.scitotenv.2023.165316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/14/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Parabens are widely present in aquatic environments and pose potential health risk. Although great progress has been made in the field of the photocatalytic degradation of parabens, the powerful Coulomb interactions between electrons and holes are the major limitations to photocatalytic performance. Hence, acid-induced tubular g-C3N4 (AcTCN) was prepared and applied for the removal of parabens from a real water environment. AcTCN not only increased the specific surface area and light absorption capacity, but also selectively generated 1O2 via an energy transfer-mediated oxygen activation pathway. The 1O2 yield of AcTCN was 11.8 times higher than that of g-C3N4. AcTCN exhibited remarkable removal efficiencies for parabens depending on the length of the alkyl group. Furthermore, the rate constants (k values) of parabens in ultrapure water were higher than those in tap and river water because of the presence of organic and inorganic species in real water environments. Two possible pathways for the photocatalytic degradation of parabens are proposed based on the identification of intermediates and theoretical calculations. In summary, this study offers theoretical support for the efficient enhancement of the photocatalytic performance of g-C3N4 for the removal of parabens in real water environments.
Collapse
Affiliation(s)
- Yu-Wei Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Shu-Zhi Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Min-Bo Zhao
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China.
| |
Collapse
|