1
|
Zhou W, Li Z, Liu Y, Shen C, Tang H, Huang Y. Soil type data provide new methods and insights for heavy metal pollution assessment and driving factors analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135868. [PMID: 39341194 DOI: 10.1016/j.jhazmat.2024.135868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/08/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
Assessing heavy metal pollution and understanding the driving factors are crucial for monitoring and managing soil pollution. This study developed two modified assessment methods (NIPIt and NECI) based on soil type-specific background values and pollution indices, and combined them with the receptor model to evaluate pollution status. Additionally, a structural equation model was used to analyze the driving factors of soil heavy metal pollution. Results showed that the average NIPIt and NECI were 1.48 and 0.92, respectively, indicating a low pollution risk level. In some areas, Cd and Hg were the primary heavy metals contributing to pollution risk, with their highest average concentrations exceeding soil type-specific background values by 2.06 and 2.04 times, respectively. Additionally, in black soils, meadow soils, and chernozems, heavy metals primarily originated from natural sources, accounting for 48.92 %, 45.98 %, and 45.58 %, respectively. In aeolian soils, agricultural sources were predominant, contributing 43.38 %. Soil pH and organic matter were key soil properties affecting NECI and NIPIt, with direct effects of 0.36 and -0.19, respectively. This study aims to provide new methods and insights for the comprehensive assessment and driving factors analysis of soil heavy metal pollution, with the goal of enhancing pollution monitoring and reducing risk.
Collapse
Affiliation(s)
- Wentao Zhou
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yunjia Liu
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chongyang Shen
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huaizhi Tang
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuanfang Huang
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Olivares DMM, Santana CS, Neris JB, Luzardo FHM, Fausto AMF, Mol AW, Velasco FG. Assessment of potential human health, radiological and ecological risks around mining areas in northeastern Brazil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:342. [PMID: 39073664 DOI: 10.1007/s10653-024-02121-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
Mining is responsible for the release of metallic pollutants and radioactive materials into the environment, which have the potential to disrupt ecosystems and pose significant risks to human health. Significant mining activity is concentrated in the municipality of Caetité (northeastern Brazil), where Latin America's only active uranium mine and significant iron ore deposits are located. Although previous studies have shown that the regional soil and water resources are highly contaminated by various toxic elements and that exposure to these elements is known to have adverse effects on human health, the health risks in this mining region have never been assessed. The aim of this unprecedented comprehensive investigation was to assess the health, radiological and ecological risks in this mining region, which is home to nearly 100,000 people. To achieve our goal, soil and water samples were collected in the vicinity of the mines and in the main settlements in the region. Fifteen metallic toxic elements were determined using Instrumental Neutron Activation Analysis and Inductively Coupled Plasma Optical Emission Spectrometry. The HERisk code, which follows the main methodological guidelines for risk assessment, was used to quantify human health, radiological and ecological indices. The average values of the total risk and cancer risk indices indicated that region falls into the moderate risk category (1.0 ≤ HItot < 4.0). However, 63% of the sites had high risk values, with Fe, Co and As being the metals contributing most to total and cancer risk, respectively. Near the mining areas, the potential ecological risk can be considered extreme (PERI ≥ 600). The values of the calculated radiological indices correspond to typical values in natural uranium areas. However, in the communities near the mine, the dose values are slightly above the permissible limit (1 mSv y-1), so they must be continuously monitored, and risk mitigation measures must be taken.
Collapse
Affiliation(s)
| | | | - Jordan B Neris
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Francisco H M Luzardo
- Higher Institute of Technologies and Applied Sciences (InSTEC), University of Havana, La Habana, Cuba
| | - Agnes M F Fausto
- Center for Research in Radiation Sciences and Technologies (CPqCTR), State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Anderson W Mol
- Center for Research in Radiation Sciences and Technologies (CPqCTR), State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Fermin G Velasco
- Center for Research in Radiation Sciences and Technologies (CPqCTR), State University of Santa Cruz, Ilhéus, Bahia, Brazil
| |
Collapse
|
3
|
Yang J, Ouyang L, Chen S, Zhang C, Zheng J, He S. Amendments affect the community assembly and co-occurrence network of microorganisms in Cd and Pb tailings of the Eucalyptus camaldulensis rhizosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172365. [PMID: 38641118 DOI: 10.1016/j.scitotenv.2024.172365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
Mining tailings containing large amounts of Pb and Cd cause severe regional ecosystem pollution. Soil microorganisms play a regulatory role in the restoration of degraded ecosystems. The remediation of heavy metal-contaminated tailings with amendments and economically valuable Eucalyptus camaldulensis is a research hotspot due to its cost-effectiveness and sustainability. However, the succession and co-occurrence patterns of these microbial communities in this context remain unclear. Tailing samples of five kinds of Cd and Pb were collected in E. camaldulensis restoration models. Physicochemical properties, the proportions of different Cd and Pb forms, microbial community structure, and the co-occurrence network of rhizosphere tailings during different restoration process (organic bacterial manure, organic manure, inorganic fertilizer, bacterial agent) were considered. Organic and organic bacterial manures significantly increased pH, cation exchange capacity, and the proportion of residual Pb. Still, there was a significant decrease in the proportion of reducible Pb. The changes in microbial communities were related to physicochemical properties and the types of amendments. Organic and organic bacterium manures decreased the relative abundance of oligotrophic groups and increased the relative abundance of syntrophic groups. Inorganic fertilizers and bacterial agents decreased the relative abundance of saprophytic fungi. B. subtilis would play a better role in the environment improved by organic manure, increasing the relative abundance of beneficial microorganism and reducing the relative abundance of pathogenic microorganism. pH, cation exchange capacity, and the proportion of different forms of Pb were the main factors affecting the bacterial and fungi variation. All four amendments transformed the main critical groups of the microbial network structure from acidophilus and pathogenic microorganisms to beneficial microorganisms. Heavy metal-resistant microorganisms, stress-resistant microorganisms, beneficial microorganisms that promote nutrient cycling, and copiotrophic groups have become critical to building stable rhizosphere microbial communities. The topological properties and stability of the rhizosphere co-occurrence network were also enhanced. Adding organic and organic bacterium manures combined with E. camaldulensis to repair Cd and Pb tailings improved (1) pH and cation exchange capacity, (2) reduced the biological toxicity of Pb, (3) enhanced the stability of microbial networks, and (4) improved ecological network relationships. These positive changes are conducive to the restoration of the ecological functions of tailings.
Collapse
Affiliation(s)
- Jiaqi Yang
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang 524022, China
| | - Linnan Ouyang
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang 524022, China.
| | - Shaoxiong Chen
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang 524022, China
| | - Cheng Zhang
- Experimental Forest Farm of Qingyuan County,Qingyuan 323800, China
| | - Jiaqi Zheng
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang 524022, China
| | - Shae He
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang 524022, China
| |
Collapse
|
4
|
Banerjee S, Ghosh S, Chakraborty S, Sarkar D, Datta R, Bhattacharyya P. Synergistic impact of bioavailable PHEs and alkalinity on microbial diversity and traits in agricultural soil adjacent to chromium-asbestos mines. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124021. [PMID: 38657890 DOI: 10.1016/j.envpol.2024.124021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Soil microbial communities undergo constant fluctuations, particularly in response to environmental factors. Although the deposition of toxic mine waste is recognized for introducing potentially hazardous elements (PHEs) into the soil, its specific impacts on microbial communities remain unclear. This study aims to explore the combined effects of soil alkalinity and bioavailable PHEs on microbial diversity and traits in agricultural soil adjacent to a chromium-asbestos mining area. By employing a comprehensive analysis, this study indicated that microbiological attributes were reduced in contaminated areas (zone 1), whereas both the levels of bioavailable PHEs (CrWs: 31.08 mg/kg, NiWs: 13.90 mg/kg) and alkalinity indices (CROSS, MCAR, MH) were significantly higher. The spatial distribution of soil alkalinity and bioavailable PHEs, primarily originating from chromium-asbestos mines, has been determined. This study also elucidates the negative relationship between soil stressors (Alkalinity and PHEs) and microbial activities (soil enzymatic activity, microbial respiration, and biomass carbon). The vector's length exhibited a notable difference between zone 1 (0.51) and zone 2 (0.32), indicating a substantial limitation on carbon (C). Also, the investigation of soil bacterial diversity unveiled notable disparities in the prevalence of microbial populations inside zone 1. Proteobacteria constituted 57.18% of the total population indicating a noteworthy prevalence in the contaminated soils. Finally, the random forest (RF) algorithm from machine learning was selected and proven to be a robust choice in Taylor diagrams for predicting the causative stressors responsible for the deterioration of soil microbial health. Therefore, this research offers insights into the health and resilience of soil microbial communities under synergistic stress conditions, which will aid environmentalists in planning future interventions and improving sustainable farming techniques.
Collapse
Affiliation(s)
- Sonali Banerjee
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand, 815301, India
| | - Saibal Ghosh
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand, 815301, India
| | - Shreya Chakraborty
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand, 815301, India
| | - Dibyendu Sarkar
- Stevens Institute of Technology, Department of Civil, Environmental, and Ocean Engineering, Hoboken, NJ, 07030, USA
| | - Rupali Datta
- Department of Biological Science, Michigan Technological University, Michigan, USA
| | - Pradip Bhattacharyya
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand, 815301, India.
| |
Collapse
|
5
|
Wang C, Luo A, Qu S, Liang X, Xiao B, Mu W, Wang Y, Yu R. Anthropogenic processes drive spatiotemporal variability of sulfate in groundwater from a multi-aquifer system: Dilution caused by mine drainage. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 264:104358. [PMID: 38692144 DOI: 10.1016/j.jconhyd.2024.104358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
The water quality evolution of surface and groundwater caused by mining activities and mine drainage is a grave public concern worldwide. To explore the effect of mine drainage on sulfate evolution, a multi-aquifer system in a typical coal mine in Northwest China was investigated using multi-isotopes (δ34SSO4, δ18OSO4, δD, and δ18Owater) and Positive Matrix Factorization (PMF) model. Before mining, the Jurassic aquifer was dominated by gypsum dissolution, accompanied by cation exchange and bacterial sulfate reduction, and the phreatic aquifers and surface water were dominated by carbonate dissolution. Significant increase in sulfate in phreatic aquifers due to mine drainage during the early stages of coal mining. However, in contrast to common mining activities that result in sulfate contamination from pyrite oxidation, mine drainage in this mining area resulted in accelerated groundwater flow and enhanced hydraulic connections between the phreatic and confined aquifers. Dilution caused by the altered groundwater flow system controlled the evolution of sulphate, leading to different degrees of sulfate decrease in all aquifers and surface water. As the hydrogeochemical characteristic of Jurassic aquifer evolved toward phreatic aquifer, this factor should be considered to avoid misjudgment in determining the source of mine water intrusion. The study reveals the hydrogeochemical evolution induced by mine drainage, which could benefit to the management of groundwater resources in mining areas.
Collapse
Affiliation(s)
- Chenyu Wang
- China University of Geosciences, Beijing 100083, China
| | - Ankun Luo
- Xi'an Research Institute of China Coal Technology & Engineering Group Corp, Xi'an 710054, China
| | - Shen Qu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Xiangyang Liang
- Xi'an Research Institute of China Coal Technology & Engineering Group Corp, Xi'an 710054, China
| | - Binhu Xiao
- Xi'an Research Institute of China Coal Technology & Engineering Group Corp, Xi'an 710054, China
| | - Wenping Mu
- China University of Geosciences, Beijing 100083, China
| | - Yuqin Wang
- China University of Geosciences, Beijing 100083, China
| | - Ruihong Yu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
6
|
Li A, Kong L, Peng C, Feng W, Zhang Y, Guo Z. Predicting Cd accumulation in rice and identifying nonlinear effects of soil nutrient elements based on machine learning methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168721. [PMID: 38008332 DOI: 10.1016/j.scitotenv.2023.168721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
The spatial mismatch of Cd content in soil and rice causes difficulties in environmental management for paddy soil. To investigate the influence of soil environment on the accumulation of Cd in rice grain, we conducted a paired field sampling in the middle of the Xiangjiang River basin, examining the relationships between soil properties, soil nutrient elements, Cd content, plant uptake factor (PUFCd), and translocation factors in different rice organs (root, shoot, and grain). The total soil Cd (CdT) and available Cd (CdA) contents and PUFCd showed large spatial variability with ranges of 0.31-6.19 mg/kg, 0.03-3.07 mg/kg, and 0.02-3.51, respectively. Soil pH, CdT, CdA, and the contents of soil nutrient elements (Mg, Mn, Ca, P, Si, and B) were linearly correlated with grain Cd content (Cdg) and PUFCd. The decision tree analysis identified nonlinear effects of Si, Zn and Fe on rice Cd accumulation, which suggested that low Si and high Zn led to high Cdg, and low Si and Fe caused high PUFCd. Using the soil nutrient elements as predictor variables, random forest models successfully predicted the Cdg and PUFCd and performed better than multiple linear regressions. It suggested the impacts of soil nutrient elements on rice Cd accumulation should receive more attention.
Collapse
Affiliation(s)
- Aoxue Li
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Linglan Kong
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Wenli Feng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yan Zhang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| |
Collapse
|
7
|
Liu T, Wang Z. Contamination and health risk assessment of heavy metals in soil surrounding an electroplating factory in JiaXing, China. Sci Rep 2024; 14:4097. [PMID: 38374378 PMCID: PMC11306587 DOI: 10.1038/s41598-024-54620-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/14/2024] [Indexed: 02/21/2024] Open
Abstract
A total of 30 samples from the downwind direction of a certain electroplating company in Jiaxing were collected in layers to analyze their heavy metal content. The soil risk assessment was conducted from the perspective of ecological and human health risks using the ground accumulation index method and human health risk assessment method. The results showed that in all samples, cadmium and arsenic far exceeded the soil background values, with an average exceeding multiple of 14.31 and 64.42, respectively, and a exceeding rate of 100%. After evaluation by the ground accumulation index, among these six heavy metals, arsenic and cadmium belong to extremely serious pollution levels. The human health risk assessment of electroplating plants found that in the exposure risk assessment, the ingestion value was much greater than the harm caused by breathing and skin, and the maximum exposure damage value of arsenic to children and adults was 4.17 × 10-3, among the carcinogenic risks, the risk brought by consumption is much greater than the respiratory and skin carcinogenic risk index, with the highest value score of 3.37 for cadmium, arsenic, and zinc carcinogenic risks 3.37 × 10-6, 2.42 × 10-3, 1.10 × 10-4.
Collapse
Affiliation(s)
- Tingting Liu
- Institute of Environmental Engineering, Department of Ecological Health, Hangzhou Vocational & Technical College, Hangzhou, 310018, People's Republic of China.
- Key Laboratory of Environmental Pollution Control Technology Research of Hejiang Province, Eco-Environmental Science Research & Design Institute of Zhejiang Province, Hangzhou, 310007, People's Republic of China.
| | - Zhen Wang
- Institute of Environmental Engineering, Department of Ecological Health, Hangzhou Vocational & Technical College, Hangzhou, 310018, People's Republic of China
| |
Collapse
|
8
|
Zhang Y, Zhang Q, Chen W, Shi W, Cui Y, Chen L, Shao J. Source apportionment and migration characteristics of heavy metal(loid)s in soil and groundwater of contaminated site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122584. [PMID: 37739256 DOI: 10.1016/j.envpol.2023.122584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
The rapid industrial growth has generated heavy metal(loid)s contamination in the soil, which poses a serious threat to the ecology and human health. In this study, 580 samples were collected in Henan Province, China, for source apportionment, migration characterization and health risk evaluation using self-organizing map, positive matrix factorization and multivariate risk assessment methods. The results showed that samples were classified into four groups and pollution sources included chromium slag dump, soil parent rock and abandoned factory. The contents of Cr, Pb, As and Hg were low in Group 1. Group 2 was characterized by total Cr, Cr(Ⅵ) and pH. The enrichment of total Cr and Cr(Ⅵ) in soil was mainly attributed to chromium slag dump, accounting for more than 84.0%. Group 3 was dominated by Hg and Pb. Hg and Pb were primarily attributed to abandoned factory, accounting for 84.7% and 70.0%, respectively. Group 4 was characterized by As. The occurrence of As was not limited to one individual region. The contribution of soil parent rock reached 83.0%. Furthermore, the vertical migration of As, Hg, Pb and Cr(Ⅵ) in soil was mainly influenced by medium permeability, pH and organic matter content. The trends of As, Pb, and Hg with depth were basically consistent with the trends of organic matter with depth, and were negatively correlated with the change in pH with depth. The trends of Cr(Ⅵ) with depth were basically consistent with the changes in pH with the depth. The content of Cr(Ⅵ) in the deep soil did not exceed the detection limits and Cr(Ⅵ) contamination occurred in the deep aquifer, suggesting that Cr(Ⅵ) in the deep groundwater originated from the leakage of shallow groundwater. The assessment indicated that the non-carcinogenic and carcinogenic risks for children and adults could not be neglected. Moreover, children were more susceptible than adults.
Collapse
Affiliation(s)
- Yaobin Zhang
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China; MNR Key Laboratory of Shallow Geothermal Energy, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Qiulan Zhang
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China; MNR Key Laboratory of Shallow Geothermal Energy, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Wenfang Chen
- The First Institute of Geo-environment Survey of Henan, Zhengzhou, 450045, China
| | - Weiwei Shi
- The First Institute of Geo-environment Survey of Henan, Zhengzhou, 450045, China
| | - Yali Cui
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China; MNR Key Laboratory of Shallow Geothermal Energy, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Leilei Chen
- The First Institute of Geo-environment Survey of Henan, Zhengzhou, 450045, China
| | - Jingli Shao
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China; MNR Key Laboratory of Shallow Geothermal Energy, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
9
|
Chen T, Wen X, Zhou J, Lu Z, Li X, Yan B. A critical review on the migration and transformation processes of heavy metal contamination in lead-zinc tailings of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122667. [PMID: 37783414 DOI: 10.1016/j.envpol.2023.122667] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
The health risks of lead-zinc (Pb-Zn) tailings from heavy metal (HMs) contamination have been gaining increasing public concern. The dispersal of HMs from tailings poses a substantial threat to ecosystems. Therefore, studying the mechanisms of migration and transformation of HMs in Pb-Zn tailings has significant ecological and environmental significance. Initially, this study encapsulated the distribution and contamination status of Pb-Zn tailings in China. Subsequently, we comprehensively scrutinized the mechanisms governing the migration and transformation of HMs in the Pb-Zn tailings from a geochemical perspective. This examination reveals the intricate interplay between various biotic and abiotic constituents, including environmental factors (EFs), characteristic minerals, organic flotation reagents (OFRs), and microorganisms within Pb-Zn tailings interact through a series of physical, chemical, and biological processes, leading to the formation of complexes, chelates, and aggregates involving HMs and OFRs. These interactions ultimately influence the migration and transformation of HMs. Finally, we provide an overview of contaminant migration prediction and ecological remediation in Pb-Zn tailings. In this systematic review, we identify several forthcoming research imperatives and methodologies. Specifically, understanding the dynamic mechanisms underlying the migration and transformation of HMs is challenging. These challenges encompass an exploration of the weathering processes of characteristic minerals and their interactions with HMs, the complex interplay between HMs and OFRs in Pb-Zn tailings, the effects of microbial community succession during the storage and remediation of Pb-Zn tailings, and the importance of utilizing process-based models in predicting the fate of HMs, and the potential for microbial remediation of tailings.
Collapse
Affiliation(s)
- Tao Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| | - Xiaocui Wen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Jiawei Zhou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Zheng Lu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Xueying Li
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Bo Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| |
Collapse
|
10
|
Pegu R, Paul S, Bhattacharyya P, Prakash A, Bhattacharya SS. Exorbitant signatures of pesticides and pharmaceuticals in municipal solid wastes (MSWs): Novel insights through risk analysis, dissolution dynamics, and model-based source identification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165855. [PMID: 37516171 DOI: 10.1016/j.scitotenv.2023.165855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Studies on the occurrence and fates of emerging organic micropollutants (EOMPs) like pharmaceuticals and pesticides in MSWs are scarce in the literature. Therefore, MSWs were sampled from 20 Indian landfills and characterized for five widely consumed EOMPs (chlorpyrifos, cypermethrin, carbofuran, carbamazepine, and sodium diclofenac), physicochemical, and biological properties. The pesticide (median: 0.17-0.44 mg kg-1) and pharmaceutical (median: 0.20-0.26 mg kg-1) concentrations significantly fluctuated based on landfill localities. Eventually, principal component and multi-factor (MFA) models demonstrated close interactions of EOMPs with biological (microbial biomass and humification rates) and chemical (N, P, K, Ca, S, etc.) properties of MSWs. At the same time, the MFA resolved that EOMPs' fates in MSWs significantly differ from bigger cosmopolitan cities to smaller rural townships. Correspondingly, the concentration-driven ecological risks were high in 15 MSWs with EOMP-toxicity ranks of diclofenac > carbofuran = chlorpyrifos > cypermethrin > carbamazepine. The EOMPs' dissolution dynamics and source apportionments were evaluated using the positive matrix factorization (PMF) model for the first time on experimental data, extracting four anthropogenic sources (households, heterogeneous business centers, agricultural, and open drains). The most significant contribution of EOMPs to MSWs was due to heterogeneous business activity. Notably, the aging of soluble chemical fractions seems to influence the source characteristics of EOMPs strongly.
Collapse
Affiliation(s)
- Ratul Pegu
- Soil and Agro Bio-engineering Laboratory, Department of Environmental Science, Tezpur Central University, Napaam, Tezpur 784028, Assam, India
| | - Sarmistha Paul
- Soil and Agro Bio-engineering Laboratory, Department of Environmental Science, Tezpur Central University, Napaam, Tezpur 784028, Assam, India; State Pollution Control Board, Govt. of Assam, Guwahati-781021, India
| | - Pradip Bhattacharyya
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand 815301, India
| | - Amit Prakash
- Environmental Modeling Laboratory, Department of Environmental Science, Tezpur Central University, Napaam, Tezpur 784028, Assam, India.
| | - Satya Sundar Bhattacharya
- Soil and Agro Bio-engineering Laboratory, Department of Environmental Science, Tezpur Central University, Napaam, Tezpur 784028, Assam, India.
| |
Collapse
|
11
|
Wang L, Mao X, Song X, Wei X, Yu H, Xie S, Zhang L, Tang W. Non-Negligible Ecological Risks of Urban Wetlands Caused by Cd and Hg on the Qinghai-Tibet Plateau, China. TOXICS 2023; 11:654. [PMID: 37624160 PMCID: PMC10458823 DOI: 10.3390/toxics11080654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
The Huangshui National Wetland Park (HNWP) is a unique national wetland park in a city on the Qinghai-Tibetan Plateau, containing three zones: Haihu, Beichuan, and Ninghu. In this study, a total of 54 soil samples (18 sampling points with depths of 0-10 cm, 10-20 cm, and 20-30 cm) were collected in these three zones, and the contents of heavy metals (Cr, Cd, Cu, Hg, Ni, Pb, Zn, and As) of each sample were determined. The ecological risk of eight kinds of heavy metals was evaluated by using the geo-accumulation index (Igeo), and the ecological risk-controlling effect of the Xining urban wetlands on heavy metals was explored by comparative analysis, and the possible sources of heavy metals in the soil were analyzed via correlation analysis and principal component analysis (PCA). The results revealed that the total heavy metal concentration order was Haihu > Beichuan > Ninghu zone. As and Cu presented vertical accumulation characteristics in the surface and lower horizon, respectively. Cr, Cd, Hg, Ni, Pb, and Zn accumulated downwards along the depth. On the spatial scale, the enrichments of Cd and Hg brought non-negligible ecological risks in plateau urban wetlands. The results of PCA indicated that soil heavy metals mainly came from compound sources of domestic and atmospheric influences, traffic pollution sources, and industrial pollution sources. The study has revealed that human activities have inevitable negative impacts on wetland ecosystems, while the HNWP provides a significant weakening effect on heavy metal pollution.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810008, China; (L.W.); (L.Z.)
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China
| | - Xufeng Mao
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810008, China; (L.W.); (L.Z.)
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China
- Academy of Plateau Science and Sustainability, People’s Government of Qinghai Province and Beijing Normal University, Xining 810016, China
| | - Xiuhua Song
- Management and Service Center for Huangshui National Wetland Park, Xining 810016, China; (X.S.); (S.X.)
| | - Xiaoyan Wei
- School of Economics and Management, Qinghai Normal University, Xining 810008, China;
| | - Hongyan Yu
- Management and Service Center of Qilian Mountain National Park, Xining 810008, China;
| | - Shunbang Xie
- Management and Service Center for Huangshui National Wetland Park, Xining 810016, China; (X.S.); (S.X.)
| | - Lele Zhang
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810008, China; (L.W.); (L.Z.)
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China
| | - Wenjia Tang
- State Key Laboratory for Environmental Protection Monitoring and Assessment of the Qinghai–Xining Plateau, Xining 810007, China;
| |
Collapse
|
12
|
Ghosh S, Banerjee S, Mukherjee A, Bhattacharyya P. Appraise potassium chemistry and distribution patterns in tailing soil, India: Through quantity - Intensity relations and multi model statistical methods. CHEMOSPHERE 2023:139184. [PMID: 37302492 DOI: 10.1016/j.chemosphere.2023.139184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
Tailings are waste materials left behind after mineral extraction. Giridih district of Jharkhand, India has the second largest ore of mica mines in the country. This study evaluated the forms of potassium (K+) and quantity-intensity relationships in soils contaminated by tailings around the abundant mica mines. A total of 63 rice rhizosphere soil samples (8-10 cm depth) were collected from agricultural fields near 21 mica mines in the Giridih district at different distances: 10 m (zone 1), 50 m (zone 2), and 100 m (zone 3). The samples were collected to quantify various forms of potassium in the soil and characterize non-exchangeable K (NEK) reserves and Q/I isotherms. The semi-logarithmic release of NEK with continuous extractions suggests a decrease in release over time. Significant values of threshold K+ levels were observed in zone 1 samples. As K+ concentrations increased, the activity ratio (AReK) and its corresponding labile K+ (KL) concentrations decreased. The AReK, KL, and fixed K+ (KX) values were higher in zone 1 [AReK: 3.2 (mol L-1)1/2 × 10-4, KL: 0.058 cmol kg-1, and KX: 0.038 cmol kg-1), except for readily available K+ (K0) for zone 2 (0.028 cmol kg-1). The potential buffering capacity and K+ potential values were higher in zone 2 soils. In zone 1, Vanselow selectivity coefficients (KV) and Krishnamoorthy-Davis-Overstreet selectivity coefficients (KKDO) were higher, while Gapon constants were higher in zone 3. It was found that AReK was significantly correlated with K0, KL, K+ saturation, -ΔG, KV, and KKDO. Different statistical methods such as positive matrix factorization, self-organizing maps, geostatistics, and Monte Carlo simulation approaches were employed to predict soil K+ enrichment, source apportionment, distribution patterns, availability for plants, and contribution to soil K+ maintenance. Thus, this study significantly contributes to understanding K+ dynamics in mica mine soils and operational K+ management.
Collapse
Affiliation(s)
- Saibal Ghosh
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, 815301, Jharkhand, India
| | - Sonali Banerjee
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, 815301, Jharkhand, India
| | - Abhishek Mukherjee
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, 815301, Jharkhand, India
| | - Pradip Bhattacharyya
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, 815301, Jharkhand, India.
| |
Collapse
|
13
|
Ma J, Chen L, Chen H, Wu D, Ye Z, Zhang H, Liu D. Spatial distribution, sources, and risk assessment of potentially toxic elements in cultivated soils using isotopic tracing techniques and Monte Carlo simulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115044. [PMID: 37216863 DOI: 10.1016/j.ecoenv.2023.115044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
Potentially toxic elements (PTEs) in cultivated lands pose serious threats to the environment and human health. Therefore, improving the understanding of their distinct sources and environmental risks by integrating various methods is necessary. This study investigated the distribution, sources, and environmental risks of eight PTEs in cultivated soils in Lishui City, eastern China, using digital soil mapping, positive matrix factorisation (PMF), isotopic tracing, and Monte Carlo simulation. The results showed that Pb and Cd are the main pollutants, which posed higher ecological risks in the study area than the other PTEs. Natural, mining, traffic, and agricultural sources were identified as the four determinants of PTE accumulation via a PMF model combined with Pearson correlation analysis, showing that their contribution rates were 22.6 %, 45.7 %, 15.2 %, and 16.5 %, respectively. Stable isotope analysis further confirmed that local mining activities affected the HM accumulation. Additionally, non-carcinogenic and carcinogenic risk values for children were 3.18 % and 3.75 %, respectively, exceeding their acceptable levels. We also identified that mining activities were the most important sources of human health risks (55.7 % for adults and 58.6 % for children) via Monte Carlo simulations coupled with the PMF model. Overall, this study provides insights into the PTE pollution management and health risk control in cultivated soils.
Collapse
Affiliation(s)
- Jiawei Ma
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Hansong Chen
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China.
| | - Dongtao Wu
- Agricultural and Rural Bureau of Lishui City, Zhejiang 323000, China
| | - Zhengqian Ye
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Haibo Zhang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Dan Liu
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|