1
|
Jalilian M, Bissessur R, Ahmed M, Hsiao A, He QS, Hu Y. A review: Hydrochar as potential adsorbents for wastewater treatment and CO 2 adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169823. [PMID: 38199358 DOI: 10.1016/j.scitotenv.2023.169823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
To valorize the biomass and organic waste, hydrothermal carbonization (HTC) stands out as a highly efficient and promising pathway given its intrinsic advantages over other thermochemical processes. Hydrochar, as the main product obtained from HTC, is widely applied as a fuel source and soil conditioner. Aside from these applications, hydrochar can be either directly used or modified as bio-adsorbents for environmental remediation. This potential arises from its tunable surface chemistry and its suitability to act as a precursor for activated or engineered carbon. In view of the importance of this topic, this review offers a thorough examination of the research progress for using hydrochar and its modified forms to remove organic dyes (cationic and anionic dyes), heavy metals, herbicides/pesticides, pharmaceuticals, and CO2. The review also sheds light on the fundamental chemistry involved in HTC of biomass and the major analytical techniques applied for understanding surface chemistry of hydrochar and modified hydrochar. The knowledge gaps and potential hurdles are identified to highlight the challenges and prospects of this research field with a summary of the key findings from this review. Overall, this article provides valuable insights and directives and pinpoints the areas meriting further investigation in the application potential of hydrochar in wastewater management and CO2 capture.
Collapse
Affiliation(s)
- Milad Jalilian
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Rabin Bissessur
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Marya Ahmed
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Amy Hsiao
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Quan Sophia He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada.
| | - Yulin Hu
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
2
|
Shahib II, Ifthikar J, Wang S, Elkhlifi Z, Wang J, Chen Z. Nitrogen-rich carbon composite fabricated from waste shrimp shells for highly efficient oxo-vanadate adsorption-coupled reduction. CHEMOSPHERE 2023; 340:139915. [PMID: 37633604 DOI: 10.1016/j.chemosphere.2023.139915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/28/2023]
Abstract
Protein, calcium carbonate, and chitin are abundant in shrimp shells. In this study, chemical treatment followed by hydrothermal carbonization was used to synthesize the nitrogen-rich hydrochar (HSHC) from shrimp shells. The untreated hydrochar exhibited a higher amount of calcium (25.37%) and less amount of nitrogen (2.68%) with alkaline pH (9.1). Interestingly chemical pre-treatment on shrimp shells boosted the nitrogen content to 6.81% and eliminated the calcium while controlling the pH to 6.4, which was beneficial for oxo-vanadate removal. The HSHC achieved vanadium(V) adsorption capacity of 21.20 mg/g at an optimal solution pH of 3.0, whereas the pristine hydrochar performed poorly (0.66 mg/g). The abundance of oxygen and nitrogen-based functional groups that developed through the chemical treatment resulted in improved adsorption coupled reduction performance of HSHC. This study proposed an inexpensive and environmentally friendly method for converting waste shrimp shells into value-added adsorbent.
Collapse
Affiliation(s)
- Irshad Ibran Shahib
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Jerosha Ifthikar
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Siqi Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Zouhair Elkhlifi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Jia Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Zhuqi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|