1
|
Scaramboni C, Urban RC, Oliveira DPD, Dorta DJ, Campos MLAM. Particulate matter from a tropical city in southeast Brazil: Impact of biomass burning on polycyclic aromatic compounds levels, health risks, and in vitro toxicity. CHEMOSPHERE 2024; 350:141072. [PMID: 38160947 DOI: 10.1016/j.chemosphere.2023.141072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/21/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
In the context of a rising global temperature, biomass burning represents an increasing risk to human health, due to emissions of highly toxic substances such as polycyclic aromatic hydrocarbon (PAHs). Size-segregated particulate matter (PM) was collected in a region within the sugarcane belt of São Paulo state (Brazil), where biomass burning is still frequent, despite the phasing out of manual harvesting preceded by fire. The median of the total concentration of the 15 PAHs determined was 2.3 ± 1.8 ng m-3 (n = 19), where 63% of this content was in PM1.0. Concentrations of OPAHs and NPAHs were about an order of magnitude lower. PM2.5 collected in the dry season, when most of the fires occur, presented PAHs and OPAHs total concentrations three times higher than in the wet season, showing positive correlations with fire foci number and levoglucosan (a biomass burning marker). These results, added to the fact that biomass burning explained 65% of the data variance (PCA analysis), evidenced the importance of this practice as a source of PAHs and OPAHs to the regional atmosphere. Conversely, NPAHs appeared to be mainly derived from diesel-powered vehicles. The B[a]P equivalent concentration was estimated to be 4 times higher in the dry season than in the wet season, and was greatly increased during a local fire event. Cytotoxicity and genotoxicity of PM1.0 organic extracts were assessed using in vitro tests with human liver HepG2 cells. For both types of tests, significant toxicity was only observed for samples collected during the dry season. Persistent DNA damage that may have impaired the DNA repair system was also observed. The results indicated that there was a health risk associated with the air particulate mixture, mainly related to biomass burning, demonstrating the urgent need for better remediation actions to prevent the occurrence of burning events.
Collapse
Affiliation(s)
- Caroline Scaramboni
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil.
| | - Roberta Cerasi Urban
- Chemistry Department, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| | - Danielle Palma de Oliveira
- School of Pharmaceutical Sciences at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara, SP, Brazil.
| | - Daniel Junqueira Dorta
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara, SP, Brazil.
| | - Maria Lucia Arruda Moura Campos
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil.
| |
Collapse
|
2
|
Pozza SA, Gonçalves PB, Wouters FC, Vendemiatti JAS, Nogarotto DC, Pereira-Filho ER, Osório DMM, Romualdo LL, Godoi JR, Hoinaski L, Urban RC. Particulate matter pollution and non-targeted analysis of polar compounds in three regions of Brazil. CHEMOSPHERE 2023; 341:139839. [PMID: 37604347 DOI: 10.1016/j.chemosphere.2023.139839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
Atmospheric Particulate Matter (PM) is a pollutant with diverse origins, exhibiting varying chemical compositions, and undergoes several molecular transformations in the atmosphere. In this study, PM samples (PM2.5, PM10 and TSP) were collected in five Brazilian cities (Camboriú-SC; Catalão-GO; Florianópolis-SC; Limeira-SP and Novo Hamburgo-RS) during the four seasons of the year. Analysis of Variance (ANOVA) was used to evaluate the differences between each city and season in PM concentration. PM10 average concentrations were higher in the city of Limeira, compared to the other (ANOVA p-values and Tukey's test). Moreover, Tukey's test demonstrated differences between the average PM10 concentrations in summer and winter. Regarding TSP and PM2.5, Tukey's test showed differences between winter and warm seasons (spring and summer). Moreover, polar compounds from the samples collected in the summer (February) and winter (August) periods were analyzed (Ultra-High-Performance Liquid Chromatography coupled to a Quadrupole Time-of-Flight Mass Spectrometer) following a non-targeted approach and annotated. This is the first study to carry out this type of analysis in these five Brazilian cities. Despite the differences in PM concentrations, profiles of polar organic compounds, showed similarities between samples/and, in general, the same compounds were present, albeit with different intensities. The annotated compounds are associated with vehicle emissions and plastics, which are considered important global air polluters. Therefore, there is an urgent necessity for comprehensive studies aimed at investigating the non-targeted compounds existing in the atmosphere. Such research can provide invaluable insights to policymakers, enabling them to formulate effective guidelines and policies to mitigate particulate matter concentration and enhance overall air quality.
Collapse
Affiliation(s)
- Simone A Pozza
- School of Technology, University of Campinas, R. Paschoal Marmo, 1888, Limeira, SP, 13484-332, Brazil.
| | - Priscila B Gonçalves
- School of Technology, University of Campinas, R. Paschoal Marmo, 1888, Limeira, SP, 13484-332, Brazil
| | - Felipe C Wouters
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luiz, S/n, São Carlos, SP, 13565-905, Brazil
| | - Josiane A S Vendemiatti
- School of Technology, University of Campinas, R. Paschoal Marmo, 1888, Limeira, SP, 13484-332, Brazil
| | - Danilo C Nogarotto
- School of Technology, University of Campinas, R. Paschoal Marmo, 1888, Limeira, SP, 13484-332, Brazil
| | - Edenir R Pereira-Filho
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luiz, S/n, São Carlos, SP, 13565-905, Brazil
| | - Daniela M M Osório
- School of Technology, University of Campinas, R. Paschoal Marmo, 1888, Limeira, SP, 13484-332, Brazil
| | - Lincoln L Romualdo
- Federal University of Catalão, Av. Dr. Lamartine Pinto de Avelar, 1120, Setor Universitário, Catalão, GO, 75705-220, Brazil
| | - Joeci R Godoi
- Federal Institute Catarinense, R. Joaquim Garcia, S/n - Centro, Camboriú, SC, 88340-055, Brazil
| | - Leonardo Hoinaski
- Federal University of Santa Catarina, R. Eng. Agronômico Andrei Cristian Ferreira, S/n - Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Roberta C Urban
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luiz, S/n, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
3
|
do Nascimento RDKS, Carvalho JS, Miranda RR, Lima MA, Rocha FV, Zucolotto V, Lynch I, Urban RC. In vitro toxicity and lung cancer risk: Atmospheric particulate matter from a city in southeastern Brazil impacted by biomass burning. CHEMOSPHERE 2023; 338:139484. [PMID: 37442389 DOI: 10.1016/j.chemosphere.2023.139484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/20/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
The effects of PM10 on human health were investigated using samples collected in São Carlos city (São Paulo state), by the determination of the concentrations of PAHs and derivatives, together with evaluations of cytotoxicity and the formation of ROS in in vitro tests. In 2016, the mean concentrations of PM10, ΣPAHs, Σoxy-PAHs, Σnitro-PAHs, Σsaccharides, and Σions were 21.12 ± 9.90 μg m-3, 1.47 ± 1.70 ng m-3, 0.37 ± 0.31 ng m-3, 0.84 ng m-3, 119.91 ± 62.14 ng m-3, and 5.66 ± 4.52 μg m-3, respectively. The PM10 concentrations did not exceed the limit thresholds set by national legislation, however, the annual lung cancer risk calculated was 2.59 ± 1.22 cases per 100,000 people, in the dry season, which accounts for the annual risk (April to September). Moreover, the carcinogenic activities of the PAHs mixture were more than 1000-fold higher in the dry season (dry season: BaPeq = 0.30 ng m-3; wet season BaPeq = 0.02 ng m-3). The concentrations of most analytes were also higher during the dry season, as had already been demonstrated in the same city. This was due to reductions in precipitation, relative humidity and air temperature, and increased biomass burning, which was the main source of PM10 in the city in 2016 (contribution rate of more than 50%). Toxicological results also showed the negative impacts of PM10, exposure to PM10 extracts for 72 h reduced the viability of A549 and MRC5 cells, and the formation of ROS was observed. The cellular responses obtained using combined and individual extracts of PM10 differed and were sometimes associated with specific compounds. These demonstrate the importance of monitoring PM toxicity using different approaches and the main anthropogenic sources' contribution. Therefore, to improve air quality and human health, existing legislation needs to be modified to incorporate these tests.
Collapse
Affiliation(s)
| | - Jonatas S Carvalho
- Chemistry Department, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Renata R Miranda
- Nanomedicine and Nanotoxicology Group, São Carlos Physics Institute, University of São Paulo, 13566-590, São Carlos, SP, Brazil
| | - Mauro A Lima
- Chemistry Department, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Fillipe V Rocha
- Chemistry Department, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, São Carlos Physics Institute, University of São Paulo, 13566-590, São Carlos, SP, Brazil
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT, Birmingham, United Kingdom
| | - Roberta C Urban
- Chemistry Department, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil; School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT, Birmingham, United Kingdom.
| |
Collapse
|