1
|
P J, V G, A HA. Adsorption performance with field emission scanning electron microscopy of fruit peel induced Silver Nanoparticles in C 16H 18ClN 3S for waste water treatment. MethodsX 2024; 13:102951. [PMID: 39315398 PMCID: PMC11417687 DOI: 10.1016/j.mex.2024.102951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
There is a growing demand for cost-effective and sustainable technologies for treating wastewater as water consumption increases and conventional technologies become more expensive. Nanoparticles have a great deal of potential for use in the treatment of waste water. Their unique surface area allows them to effectively remove toxic metal ions, pathogenic microorganisms, organic and inorganic solutes from water. This study investigated the potential of orange and banana peels as renewable nano adsorbents for removing dyes and dissolved organic compounds from textile wastewater. Orange and banana peels are an optimal selection due to their favourable chemical characteristics, namely the presence of cellulose, pectic, hemicellulose, and lignin. Their capacity to adsorb diverse anionic and cationic compounds on their surface-active sites is attributed to their unique functional group compositions. Silver nanoparticles are able to adsorb heavy metals due to their exceptionally low electrical and thermal resistance and surface plasmon resonance. The samples were thoroughly characterised using field emission scanning electron microscopy (FESEM), UV-Visible spectrometry, Fourier transform infrared spectroscopy (FTIR) and XRD. The nanoparticles were prepared (10 gm,50 gm,100 gm) and subsequently introduced to the wastewater sample. The optical density values were recorded at various time points. The optical density values demonstrate a decline over the course of the experiment, with a notable decrease observed over time. The results of this study provide valuable insights into the efficacy of these natural adsorbents and their potential for sustainable water purification technologies. For the purpose of this research, high performance instrumentation methods were performed as follows:•Field emission scanning electron microscopy for surface morphology studies.•Gas chromatography-mass spectrometry (GC-MS) for analytical technique that combines gas chromatography (GC) and mass spectrometry (MS) to identify unknown substances or contaminants.•Optical density values were measured for different timings of degradation.
Collapse
Affiliation(s)
- Jyolsna P
- School of Basic Science, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, India, 600117
| | - Gowthami V
- School of Basic Science, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, India, 600117
| | - Hajeera Aseen A
- School of Basic Science, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, India, 600117
| |
Collapse
|
2
|
Tijani NA, Hokello J, Eilu E, Akinola SA, Afolabi AO, Makeri D, Lukwago TW, Mutuku IM, Mwesigwa A, Baguma A, Adebayo IA. Metallic nanoparticles: a promising novel therapeutic tool against antimicrobial resistance and spread of superbugs. Biometals 2024:10.1007/s10534-024-00647-5. [PMID: 39446237 DOI: 10.1007/s10534-024-00647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
In recent years, antimicrobial resistance (AMR) has become an alarming threat to global health as notable increase in morbidity and mortality has been ascribed to the emergence of superbugs. The increase in microbial resistance because of harboured or inherited resistomes has been complicated by the lack of new and effective antimicrobial agents, as well as misuse and failure of existing ones. These problems have generated severe and growing public health concern, due to high burden of bacterial infections resulting from scarce financial resources and poor functioning health systems, among others. It is therefore, highly pressing to search for novel and more efficacious alternatives for combating the action of these super bacteria and their infection. The application of metallic nanoparticles (MNPs) with their distinctive physical and chemical attributes appears as promising tools in fighting off these deadly superbugs. The simple, inexpensive and eco-friendly model for enhanced biologically inspired MNPs with exceptional antimicrobial effect and diverse mechanisms of action againsts multiple cell components seems to offer the most promising option and said to have enticed many researchers who now show tremendous interest. This synopsis offers critical discussion on application of MNPs as the foremost intervening strategy to curb the menace posed by the spread of superbugs. As such, this review explores how antimicrobial properties of the metallic nanoparticles which demonstrated considerable efficacy against several multi-drugs resistant bacteria, could be adopted as promising approach in subduing the threat of AMR and harvoc resulting from the spread of superbugs.
Collapse
Affiliation(s)
- Naheem Adekilekun Tijani
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Joseph Hokello
- Department of Biology, Faculty of Science and Education, Busitema University, Tororo, Uganda
| | - Emmanuel Eilu
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Saheed Adekunle Akinola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Abdullateef Opeyemi Afolabi
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Danladi Makeri
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Tonny Wotoyitide Lukwago
- Department of Pharmacology and Toxicology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Irene M Mutuku
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Alex Mwesigwa
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Andrew Baguma
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | | |
Collapse
|
3
|
Hou S, Hong Y, Shang J, Wang Y, Shi X, Liu X, Yang G, Wang Y, Ge F, Xiao Y, Kaoutar C, Wu Y, Wang J. Construction of BSA-ZnO&Quercetin based multifunctional bionic self-assembly system and their antibacterial mechanism study. Colloids Surf B Biointerfaces 2024; 245:114288. [PMID: 39395214 DOI: 10.1016/j.colsurfb.2024.114288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
The misuse of antibiotics has led to the growing problem of multidrug-resistant (MDR) bacteria, and there is still a lack of effective antibacterial agents that can replace antibiotics. Therefore, the design and development of multifunctional nanomaterials with long-term inhibitory effects on drug-resistant bacteria are extremely challenging. In this study, a multifunctional biomimetic self-assembly system, BSA-ZnO&Quercetin, based on bovine serum albumin (BSA), ZnO, and quercetin, was established using a simple and controllable method. The prepared self-assembly system has high stability and biocompatibility, and could fully combine the performance advantages of each component. BSA-ZnO&Quercetin showed excellent broad-spectrum antibacterial activity without inducing bacterial resistance. The related antibacterial mechanism of BSA-ZnO&Quercetin primarily involves biofilm inhibition and destruction, and inducing the production of reactive oxygen species, resulting in the death of the bacteria. The biomimetic self-assembly system BSA-ZnO&Quercetin constructed in this research is expected to replace antibiotics for antibacterial application.
Collapse
Affiliation(s)
- Shuxian Hou
- School of Biological and food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Ye Hong
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210006, China
| | - Jihua Shang
- Department of Modern Analysis and Testing, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Yimei Wang
- School of Biological and food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Xuechao Shi
- School of Biological and food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Xinxin Liu
- School of Biological and food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Guoqiang Yang
- School of Biological and food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Yuxuan Wang
- School of Biological and food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Fei Ge
- School of Biological and food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Yao Xiao
- School of Biological and food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Chaldi Kaoutar
- School of Biological and food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Yuan Wu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Jun Wang
- School of Biological and food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
4
|
Naseem K, Asghar S, Sembiring KC, Khan ME, Hameed A, Massey S, Hassan W, Anwar A, Khan H, Shair F. Fabrication of bio-inorganic metal nanoparticles by low-cost lychee extract for wastewater remediation: a mini-review. Toxicol Res (Camb) 2024; 13:tfae170. [PMID: 39430210 PMCID: PMC11490315 DOI: 10.1093/toxres/tfae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
INTRODUCTION This review article gives an overview of the biogenic synthesis of metal nanoparticles (mNPs) while using Litchi chinensis extract as a reducing and stabilizing agent. The subtropical fruit tree i.e lychee contains phytochemicals such as flavonoids, terpenoids, and polyphenolic compounds which act as reducing agents and convert the metal ions into metal atoms that coagulate to form mNPs. METHODOLOGY Different methodologies adopted for the synthesis of lychee extract and its use in the fabrication of mNPs under different reaction conditions such as solvent, extract amount, temperature, and pH of the medium have also been discussed critically in detail. TECHNIQUES Different techniques such as FTIR, UV-visible, XRD, SEM, EDX, and TEM adopted for the analysis of biogenic synthesis of mNPs have also been discussed in detail. Applications of mNPs: Applications of these prepared mNPs in various fields due to their antimicrobial, antiinflammatory, anticancer, and catalytic activities have also been described in detail.
Collapse
Affiliation(s)
- Khalida Naseem
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), B. J Habibie Science and Technology Area, South Tangerang 15314, Indonesia
| | - Sana Asghar
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan
| | - Kiky Corneliasari Sembiring
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), B. J Habibie Science and Technology Area, South Tangerang 15314, Indonesia
| | - Mohammad Ehtisham Khan
- Department of Chemical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia
| | - Asima Hameed
- School of Chemistry, University of the Punjab, Lahore 54000, Pakistan
| | - Shazma Massey
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore 56000, Pakistan
| | - Warda Hassan
- Department of Chemistry, The Women University Multan, Multan 60000, Pakistan
| | - Aneela Anwar
- Department of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan
| | - Haneef Khan
- Department of Electrical and Electronics Engineering College of Engineering and Computer Science, Jazan University, Saudi Arabia
| | - Faluk Shair
- Department of Biochemistry, Emerson University Multan, Multan 60000, Pakistan
| |
Collapse
|
5
|
Obadimu CO, Shaibu SE, Enin GN, Ituen EB, Anweting IB, Ubong UU, Ekwere IO, Adewusi SG, Adeoye TJ, Fapojuwo DP, Ofon UA, Fatunla OK, Essien NS, Audu OY, Tshentu ZR, Nelana SM, Klink MJ, Ayanda OS. Aqueous phase adsorption of phenothiazine derivative onto zinc oxide doped activated carbon. Sci Rep 2024; 14:21611. [PMID: 39294196 PMCID: PMC11411138 DOI: 10.1038/s41598-024-71196-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/26/2024] [Indexed: 09/20/2024] Open
Abstract
Plant-mediated synthesis of nanoparticles is a sustainable approach that has gained widespread scientific acceptance due to its numerous benefits and applications. In this study, a zinc oxide-doped activated carbon (ZAC) derived from palm kernel shells (PKS) was synthesized via a bioreduction route using a water-based extract of Nymphaea lotus leaves as a reducing agent. The synthesized ZAC nanocomposites were characterized using microscopic (TEM, SEM) and spectroscopic (FTIR, EDS, XRD, and UV-Vis) analyses. The adsorptive properties of ZAC and efficiency in scavenging a phenothiazine derivative (methylene blue) from an aqueous solution were investigated. Results reveal that nano-scale ZAC particles were crystalline, exhibited irregular shapes, with an average size of 45 nm, and were highly dispersed. The optimum quantity adsorbed was 248 mg/g at a methylene blue concentration of 140 mg/L for 60 min using 0.02 g/100 mL of ZAC. Adsorption and kinetics data closely aligned with the Freundlich isotherm and the pseudo-second-order model, respectively indicating heterogeneous surface adsorption and chemisorption as the dominant mechanisms. The regeneration study of ZAC shows that over five cycles, thermal regeneration maintained high adsorption capacity with minimal decline and chemical regeneration significantly led to reduction in the adsorption capacity but solvent washing offered a balance between efficacy and structural preservation.
Collapse
Affiliation(s)
- Clement O Obadimu
- Department of Chemistry, Akwa Ibom State University, Ikot Akpaden, Nigeria
| | | | - Godwin N Enin
- Department of Chemistry, University of Uyo, Uyo, Nigeria
| | - Ekemini B Ituen
- Emerging Materials and Energy Group, Department of Chemistry, University of Uyo, Uyo, Nigeria
| | | | - Uwem U Ubong
- Department of Chemistry, Akwa Ibom State University, Ikot Akpaden, Nigeria
| | - Ifiok O Ekwere
- Department of Chemistry, Akwa Ibom State University, Ikot Akpaden, Nigeria
| | - Saeed G Adewusi
- Department of Chemistry, School of Sciences, Federal University of Education, Zaria, Nigeria
| | - Tijesu J Adeoye
- Department of Chemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Dele P Fapojuwo
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa
| | - Utibe A Ofon
- Department of Microbiology, University of Uyo, Uyo, Nigeria
| | | | | | - Oluwatosin Y Audu
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, Cape Town, South Africa
| | - Zenixole R Tshentu
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa
| | - Simphiwe M Nelana
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Michael J Klink
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Olushola S Ayanda
- Department of Chemistry, Federal University Oye-Ekiti, Oye-Ekiti, Nigeria.
| |
Collapse
|
6
|
Kavipriya R, Ramasubburayan R. Phytofabrication of biocompatible zinc oxide nanoparticle using Gymnema sylvestre and its potent in vitro antibacterial, antibiofilm, and cytotoxicity against human breast cancer cells (MDA-MB-231). Bioprocess Biosyst Eng 2024; 47:1377-1391. [PMID: 38819452 DOI: 10.1007/s00449-024-03035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
The increasing incidence of breast cancer and bacterial biofilm in medical devices significantly heightens global mortality and morbidity, challenging synthetic drugs. Consequently, greener-synthesized nanomaterials have emerged as a versatile alternative for various biomedical applications, offering new therapeutic avenues. This study explores the synthesis of biocompatible zinc oxide (ZnONPs) nanoparticles using Gymnema sylvestre and its antibacterial, antibiofilm, and cytotoxic properties. Characterization of ZnONPs inferred that UV-Vis spectra exhibited a sharp peak at 370 nm. Fourier transform infrared spectroscopical analysis revealed the presence of active functional groups such as aldehyde, alkyne, cyclic alkene, sulfate, alkyl aryl ether, and Zn-O bonds. X-ray diffraction analysis results confirmed the crystalline nature of the nanoparticle. Scanning electron microscope analysis evidenced hexagonal morphology, and energy-dispersive X-ray analysis confirmed zinc content. High-resolution transmission electron microscope analysis showed hexagonal and rod-shaped ZnONPs with a size of 5 nm. Zeta potential results affirmed the stability of nanoparticles. The ZnONPs effectively inhibited gram-positive (18-20 mm) than gram-negative (12-18 mm) bacterial pathogens with lower bacteriostatic and higher bactericidal values. Biofilm inhibitory property inferred ZnONPs were more effective against gram-positive (38-94%) than gram-negative bacteria (27-86%). The concentration of ZnONPs to exert 50% biofilm-inhibitory is lower against gram-positive bacteria (179.26-203.95 μg/mL) than gram-negative bacteria (201.46-236.19 μg/mL). Microscopic visualization inferred that at 250 μg/mL, ZnONPs strongly disrupted biofilm formation, as evidenced by decreased biofilm density and altered architecture. The cytotoxicity of ZnONPs against breast cancer cells showed a dose-dependent reduction in cell viability with an IC50 value of 19.4 µg/mL. AO/EB staining indicated early and late apoptotic cell death of breast cancer cells under fluorescence microscopy. The results of hemolytic activity validated the biocompatibility of the ZnONPs. Thus, the unique properties of the green-synthesized ZnONPs suggest their potential as effective drug carriers for targeted delivery in cancer therapy and the treatment of biofilm-related infections.
Collapse
Affiliation(s)
- R Kavipriya
- Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - R Ramasubburayan
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India.
| |
Collapse
|
7
|
Hasan GG, Laouini SE, Osman AI, Bouafia A, Althamthami M, Meneceur S, Kir I, Mohammed H, Lumbers B, Rooney DW. Nanostructured Mn@NiO composite for addressing multi-pollutant challenges in petroleum-contaminated water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44254-44271. [PMID: 38943002 PMCID: PMC11252200 DOI: 10.1007/s11356-024-34012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/11/2024] [Indexed: 06/30/2024]
Abstract
Efficient catalysts play a pivotal role in advancing eco-friendly water treatment strategies, particularly in the removal of diverse organic contaminants found in water-petroleum sources. This study addresses the multifaceted challenges posed by contaminants, encompassing a spectrum of heavy metals such as As, Cd, Cr, Mn, Mo, Ni, Pb, Sb, Se, and Zn alongside pollutants like oily water (OIW), total suspended solids (TSS), chemical oxygen demand (COD), dyes, and pharmaceuticals, posing threats to both aquatic and terrestrial ecosystems. Herein, we present the synthesis of biogenically derived Mn@NiO nanocomposite (NC) photocatalysts, a sustainable methodology employing an aqueous Rosmarinus officinalis L. extract, yielding particles with a size of 36.7 nm. The catalyst demonstrates exceptional efficacy in removing heavy metals, achieving rates exceeding 99-100% within 30 min, alongside notable removal efficiencies for OIW (98%), TSS (87%), and COD (98%). Furthermore, our photodegradation experiments showed remarkable efficiencies, with 94% degradation for Rose Bengal (RB) and 96% for methylene blue (MB) within 120 min. The degradation kinetics adhere to pseudo-first-order behavior, with rate constants of 0.0227 min-1 for RB and 0.0370 min-1 for MB. Additionally, the NC exhibits significant antibiotic degradation rates of 97% for cephalexin (CEX) and 96% for amoxicillin (AMOX). The enhanced photocatalytic performance is attributed to the synergistic interplay between the Mn and NiO nanostructures, augmenting responsiveness to sunlight while mitigating electron-hole pair recombination. Notably, the catalyst demonstrates outstanding stability and reusability across multiple cycles, maintaining its stable nanostructure without compromise.
Collapse
Affiliation(s)
- Gamil Gamal Hasan
- Laboratory of Valorisation and Technology of Sahara Resources (VTRS), El Oued University, 39000, El Oued, Algeria
| | - Salah Eddine Laouini
- Laboratory of Biotechnology Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, 39000, El Oued, Algeria
| | - Ahmed I Osman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, BT9 5AG, UK.
| | - Abderrhmane Bouafia
- Laboratory of Biotechnology Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, 39000, El Oued, Algeria
| | - Mohammed Althamthami
- Physics Laboratory of Thin Films and Applications, Biskra University, BP 145, 07000, Biskra, RP, Algeria
| | - Souhaila Meneceur
- Laboratory of Biotechnology Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, 39000, El Oued, Algeria
| | - Iman Kir
- Laboratory of Biotechnology Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, 39000, El Oued, Algeria
| | - Hamdi Mohammed
- Laboratory of Biotechnology Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, 39000, El Oued, Algeria
| | - Brock Lumbers
- Faculty of Technology and Bionics, Rhine-Waal University of Applied Sciences, Marie-Curie-Straße 1, 47533, Kleve, Germany
| | - David W Rooney
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, BT9 5AG, UK
| |
Collapse
|
8
|
Saini R, Mishra RK, Kumar P. Green Synthesis of Reduced Graphene Oxide Using the Tinospora cordifolia Plant Extract: Exploring Its Potential for Methylene Blue Dye Degradation and Antibacterial Activity. ACS OMEGA 2024; 9:20304-20321. [PMID: 38737070 PMCID: PMC11080027 DOI: 10.1021/acsomega.4c00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024]
Abstract
Graphene has attracted significant attention recently due to its unique mechanical, electrical, thermal, and optical properties. The present study focuses on synthesizing green rGO using the Tinospora cordifolia plant extract by mixing it in a suspension of graphene oxide. The plant extract of T. cordifolia acts as a reducing agent and is cost-effective, renewable, and eco-friendly. Green-synthesized rGO (G-rGO) was characterized using FTIR, HR-SEM, EDX, and HR-XRD analyses. G-rGO consists of nanosheets with an average width of approximately 30 nm. G-rGO has a range of hydrodynamic radius (270-470) nm and an average ζ potential of -29.9 mV. Further, G-rGO was used as a nanoadsorbent for optimal exclusion of methylene blue (MB) dye using the response surface methodology (RSM). Adsorption results confirmed 94.85% MB dye removal with 58.81 mg g-1 adsorption capacity at optimum conditions. The G-rGO's antibacterial activity was also tested against Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) bacteria, finding the exhibited zone of inhibition of 10, 11, and 15 mm and 10, 13, and 17 mm at 20, 40, and 80 μg mL-1 concentrations of G-rGO, respectively.
Collapse
Affiliation(s)
- Ravi Saini
- Department
of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh,India
| | - Ranjeet Kumar Mishra
- Department
of Chemical Engineering, Manipal Institute
of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Pradeep Kumar
- Department
of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh,India
| |
Collapse
|
9
|
Hasan MA, Hossain R, Sahajwalla V. Utilization of battery waste derived ZnO in the removal of dye from aqueous solution: A waste to wealth approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120461. [PMID: 38537458 DOI: 10.1016/j.jenvman.2024.120461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/02/2024] [Accepted: 02/20/2024] [Indexed: 04/07/2024]
Abstract
Every year a huge amount of zinc carbon batteries is discarded as waste and the management of such waste has become a growing concern all over the world. However, from these waste carbon batteries different kinds of valuable materials could be recovered. On the other hand, different industries discharged large volumes of dye wastewater into the environment which has a profound impact on environment and as well as human health. In this study, ZnO was recovered from the waste carbon batteries through pyrometallurgy process and utilized it for the treatment of methylene blue and methyl orange dye water. The batch adsorption process was carried out to observe the effect of adsorbent dosage, pH, contact time, stirring speed and temperature. Under the obtained optimal conditions adsorption kinetics (Pseudo-first order and pseudo-second order) and adsorption isotherms (Langmuir, Freundlich and Temkin) were analyzed. The results disclosed that 0.5 g and 0.6 g of ZnO showed maximum removal efficiency for MB and MO dye solution (50 ppm) whereas pH 13 and 6 were the optimal for MB and MO respectively. Kinetic studies indicate that both the adsorption processes were pseudo-second order. It was also revealed that based on regression coefficient R2 value the adsorption of MB and MO on ZnO is followed Langmuir model. Furthermore, the findings revealed that the MO adsorption on ZnO is a chemical adsorption process and MB adsorption is a physical adsorption process.
Collapse
Affiliation(s)
- Md Anik Hasan
- Centre for Sustainable Materials Research and Technology (SMaRT@UNSW), School of Materials Science and Engineering UNSW Sydney, Australia; Department of Leather Engineering, Khulna University of Engineering and Technology (KUET), Khulna, 9203, Bangladesh
| | - Rumana Hossain
- Centre for Sustainable Materials Research and Technology (SMaRT@UNSW), School of Materials Science and Engineering UNSW Sydney, Australia.
| | - Veena Sahajwalla
- Centre for Sustainable Materials Research and Technology (SMaRT@UNSW), School of Materials Science and Engineering UNSW Sydney, Australia
| |
Collapse
|
10
|
Jadoun S, Yáñez J, Aepuru R, Sathish M, Jangid NK, Chinnam S. Recent advancements in sustainable synthesis of zinc oxide nanoparticles using various plant extracts for environmental remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19123-19147. [PMID: 38379040 DOI: 10.1007/s11356-024-32357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/03/2024] [Indexed: 02/22/2024]
Abstract
The sustainable synthesis of zinc oxide nanoparticles (ZnO-NPs) using plant extracts has gained significant attention in recent years due to its eco-friendly nature and potential applications in numerous fields. This synthetic approach reduces the reliance on non-renewable resources and eliminates the need for hazardous chemicals, minimizing environmental pollution and human health risks. These ZnO-NPs can be used in environmental remediation applications, such as wastewater treatment or soil remediation, effectively removing pollutants and improving overall ecosystem health. These NPs possess a high surface area and band gap of 3.2 eV, can produce both OH° (hydroxide) and O2-° (superoxide) radicals for the generation of holes (h+) and electrons (e-), resulting in oxidation and reduction of the pollutants in their valence band (VB) and conduction band (CB) resulting in degradation of dyes (95-100% degradation of MB, MO, and RhB dyes), reduction and removal of heavy metal ions (Cu2+, Pb2+, Cr6+, etc.), degradation of pharmaceutical compounds (paracetamol, urea, fluoroquinolone (ciprofloxacin)) using photocatalysis. Here, we review an overview of various plant extracts used for the green synthesis of ZnO NPs and their potential applications in environmental remediation including photocatalysis, adsorption, and heavy metal remediation. This review summarizes the most recent studies and further research perspectives to explore their applications in various fields.
Collapse
Affiliation(s)
- Sapana Jadoun
- Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Jorge Yáñez
- Facultad de Ciencias Químicas, Departamento de Química Analítica E Inorgánica, Universidad de Concepción, Edmundo Larenas 129, 4070371, Concepción, Chile
| | - Radhamanohar Aepuru
- Departamento de Ingeniería Mecánica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
| | - Manda Sathish
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, 3460000, Talca, Chile
| | | | - Sampath Chinnam
- Department of Chemistry, M.S. Ramaiah Institute of Technology Bengaluru, Bengaluru, Karnataka, 560054, India
| |
Collapse
|
11
|
Kahya N, Şen B, Berber D, Öztekin N. Comparison of Dye Adsorption of Chitosan and Polyethylenimine Modified Bentonite Clays: Optimization, Isotherm, and Kinetic Studies. ACS OMEGA 2024; 9:9040-9052. [PMID: 38434826 PMCID: PMC10905711 DOI: 10.1021/acsomega.3c07509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 03/05/2024]
Abstract
The aim of this study was to compare the effect of modifying calcium bentonite (Bent-Ca) clay with two cationic polymers, chitosan (Chi) and polyethylenimine (PEI), on the removal of remazol black B (RB-B) dye from an aqueous solution. The samples were characterized by using scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. The fractional factorial design of 2(6-1) was applied to investigate the effects of pH, temperature, amount of adsorbent, initial dye concentration, contact time, and shaking rate on the adsorption process. To further optimize RB-B removal from an aqueous solution, a Box-Behnken design with three factors and a response surface methodology was used. The optimum conditions were a pH of 3.77, a temperature of 40.45 °C, and an initial RB-B concentration of 77.27 mg L-1 for Bent-Ca-Chi, whereas for Bent-Ca-PEI, the optimum conditions were a pH of 5.53, a temperature of 41.06 °C, and an initial dye concentration of 238.89 mg L-1. To understand the adsorption behavior, the Langmuir and Freundlich isotherms were fitted to the experimental data. It was found that the Langmuir isotherm model matched well with the dye adsorption by Bent-Ca-Chi and Bent-Ca-PEI. The kinetics study was performed using three kinetic models: pseudo-first-order, pseudo-second-order, and intraparticle diffusion models. Among these models, the RB-B dye kinetics were best represented by the pseudo-second-order model equation for the adsorbents.
Collapse
Affiliation(s)
- Nilay Kahya
- Department of Chemistry, Istanbul Technical
University, Maslak, Istanbul 34469, Turkey
| | - Begüm Şen
- Department of Chemistry, Istanbul Technical
University, Maslak, Istanbul 34469, Turkey
| | - Demet Berber
- Department of Chemistry, Istanbul Technical
University, Maslak, Istanbul 34469, Turkey
| | - Nevin Öztekin
- Department of Chemistry, Istanbul Technical
University, Maslak, Istanbul 34469, Turkey
| |
Collapse
|
12
|
Srivastava M, Singh KR, Singh T, Asiri M, Suliman M, Sabia H, Deen PR, Chaube R, Singh J. Bioinspired fabrication of zinc hydroxide-based nanostructure from lignocellulosic biomass Litchi chinensis leaves and its efficacy evaluation on antibacterial, antioxidant, and anticancer activity. Int J Biol Macromol 2023; 253:126886. [PMID: 37709228 DOI: 10.1016/j.ijbiomac.2023.126886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/22/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Zinc-based nanostructures are known for their numerous potential biomedical applications. In this context, the biosynthesis of nanostructures using plant extracts has become a more sustainable and promising alternative to effectively replace conventional chemical methods while avoiding their toxic impact. In this study, following a low-temperature calcination process, a green synthesis of Zn-hydroxide-based nanostructure has been performed using an aqueous extract derived from the leaves of Litchi chinensis, which is employed as a lignocellulose waste biomass known to possess a variety of phytocompounds. The biogenic preparation of Zn-hydroxide based nanostructures is enabled by bioactive compounds present in the leaf extract, which act as reducing and capping agents. In order to evaluate its physicochemical characteristics, the produced Zn-hydroxide-based nanostructure has been subjected to several characterization techniques. Further, the multifunctional properties of the prepared Zn-hydroxide-based nanostructure have been evaluated for antioxidant, antimicrobial, and anticancer activity. The prepared nanostructure showed antibacterial efficacy against Bacillus subtilis and demonstrated its anti-biofilm activity as evaluated through the Congo red method. In addition, the antioxidant activity of the prepared nanostructure has been found to be dose-dependent, wherein 91.52 % scavenging activity could be recorded at 200 μg/ml, with an IC50 value of 45.22 μg/ml, indicating the prepared nanostructure has a high radical scavenging activity. Besides, the in vitro cytotoxicity investigation against HepG2 cell lines explored that the as-prepared nanostructure exhibited a higher cytotoxic effect and 73.21 % cell inhibition could be noticed at 25.6 μg/ml with an IC50 of 2.58 μg/ml. On the contrary, it was found to be significantly lower in the case of HEK-293 cell lines, wherein ~47.64 % inhibition could be noticed at the same concentration. These findings might be further extended to develop unique biologically derived nanostructures that can be extensively evaluated for various biomedical purposes.
Collapse
Affiliation(s)
- Manish Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology, BHU, Varanasi 221005, India; LCB Fertilizer Pvt. Ltd., Shyam Vihar Phase 2, Rani Sati Mandir Road, Lachchhipur, Gorakhpur, Uttar Pradesh 273015, India.
| | - Kshitij Rb Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Tripti Singh
- Institute of Management Studies, Ghaziabad (University Course Campus), NH 09, Adhyatmik Nagar, Ghaziabad 201015, India
| | - Mohammed Asiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Haleema Sabia
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Prakash Ranjan Deen
- Department of Physics, Purnea College, Purnea University, Purnea, Bihar 854301, India
| | - Radha Chaube
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
13
|
T S, R SK, Nair AR. Biosynthesis of Zinc Oxide-Zerumbone (ZnO-Zer) Nanoflakes Towards Evaluating Its Antibacterial and Reactive Oxygen Species (ROS)-Dependent Cytotoxic Activity. J Fluoresc 2023:10.1007/s10895-023-03560-1. [PMID: 38148408 DOI: 10.1007/s10895-023-03560-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Being the second most prevalent metal oxide, zinc oxide (ZnO) nanomaterials have been widely studied and found to exhibit promising applications in various domains of biomedicine and agriculture. Considering the enhanced bioactivities displayed by secondary metabolite (SM) derived ZnO nanomaterials, present study was undertaken to evaluate the efficacy of ZnO nanoflake (NF) derived from Zerumbone (Zer), a sesquiterpenoid from Zingiber zerumbet rhizome with diverse pharmacological properties. ZnO NF prepared by homogeneous precipitation method using ZnSO4.7H2O (0.1 M) and NaOH (0.2 M) as precursors with and without the addition of Zer (0.38 mM) were characterized by powder UV-visible spectroscopy, X-ray diffraction (XRD), FT-IR spectroscopy and Field emission scanning electron microscope (FESEM) analysis. Optical and physical properties of ZnO-Zer NF were found to match with the typical ZnO nanomaterial properties. XRD analysis revealed reduction in size (15 nm) of the green synthesized ZnO-Zer NF compared to ZnO NF (21 nm). ZnO-Zer NF displayed linear correlation between concentration and antimicrobial activity to Salmonella typhi, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Determination of cytotoxic potential of the synthesized ZnO-Zer NF in cervical cancer cells (HeLa) showed higher cytotoxicity of ZnO-Zer NF (39.32 ± 3.01%) compared to Zer alone (27.02 ± 1.22%). Present study revealing improvement in bioactivity of Zer following conjugation with ZnO NF signifies potential of NF formation in improving therapeutic application of Zer that otherwise displays low solubility limiting its bioavailability.
Collapse
Affiliation(s)
- Shilpa T
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
| | - Sanjay Kumar R
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
| | - Aswati R Nair
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India.
| |
Collapse
|