1
|
Sun S, Hu Y, Li Z. Fe-MOFs nanosheets for photo-Fenton degradation of carbamazepine. CHEMOSPHERE 2024; 364:143240. [PMID: 39222696 DOI: 10.1016/j.chemosphere.2024.143240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Iron(II)-based metal organic framework (Fe(II)-MOF) nanosheets have emerged as promising candidates for photo-Fenton catalysis. However, efficiently synthesizing Fe(II)-MOF nanosheets remains a significant challenge. Here, a bottom-up synthesis strategy is proposed to prepare two-dimensional Fe-MOF nanosheets (TFMN) with micrometer lateral dimensions and nanometer thickness, featuring Fe(II) as the metal nodes. The application of TFMN in the photo-Fenton degradation of carbamazepine (CBZ) demonstrates remarkable CBZ degradation performance and excellent efficiency across a wide range of pH values. The electron density and density of states are further calculated by density functional theory. Mechanism analysis identifies h+, •OH and •O2- as the predominant active species contributing to the catalytic oxidation process in the Vis/TFMN/H2O2 system.
Collapse
Affiliation(s)
- Siyu Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China; School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Youyou Hu
- Shanghai Fisheries Research Institute, Shanghai Fisheries Technical Extension Station, Shanghai, 200433, China
| | - Zhengkui Li
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China; School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
2
|
Zango ZU, Khoo KS, Garba A, Garba ZN, Danmallam UN, Aldaghri O, Ibnaouf KH, Ahmad NM, Binzowaimil AM, Lim JW, Bhattu M, Ramesh MD. A review on titanium oxide nanoparticles modified metal-organic frameworks for effective CO 2 conversion and efficient wastewater remediation. ENVIRONMENTAL RESEARCH 2024; 252:119024. [PMID: 38692419 DOI: 10.1016/j.envres.2024.119024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/06/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Environmental pollution has been increasing since last decade due to increasing industrialisation and urbanisation. Various kinds ofenvironmental pollutants including carbon dioxide (CO2), dyes, pharmaceuticals, phenols, heavy metals along with many organic and inorganic species have been discovered in the various environmental compartments which possess harmful impacts tox human health, wildlife, and ecosystems. Thus, various efforts have been made through regulations, technological advancements, and public awareness campaigns to reduce the impact of the pollution. However, finding suitable alternatives to mitigate their impacts remained a challenge. Metal-organic frameworks (MOFs) are one of the advanced materials with unique features such as high porosity and stability which exhibit versatile applications in environmental remediation. Their composites with titanium oxide nanoparticles (TiO2) have been discovered to offer potential feature such as light harvesting capacity and catalytic activity. The composite integration and properties have been confirmed through characterization using surface area analysis, scanning electron/transmission electron microscopy, atomic force microscopy, fourier transformed infrared spectroscopy, X-ray diffraction analysis, X-ray photoelectron spectroscopy, thermogravimetric analysis, and others. Thus, this work rigorously discussed potential applications of the MOF@TiO2 nanomaterials for the CO2 capture and effective utilization in methanol, ethanol, acetone, acetaldehyde, and other useful products that served as fuel to various industrial processes. Additionally, the work highlights the effective performance of the materials towards photocatalytic degradation of both organic and inorganic pollutants with indepth mechanistic insights. The article will offer significant contribution for the development of sustainable and efficient technologies for the environmental monitoring and pollution mitigation.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, Katsina City 2137, Katsina, Nigeria; Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, Katsina City 2137, Katsina, Nigeria.
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Abdurrahman Garba
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, Katsina City 2137, Katsina, Nigeria
| | - Zaharaddeen N Garba
- Department of Chemistry, Ahmadu Bello University, 810107, Zaria. Nigeria, India
| | | | - Osamah Aldaghri
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Riyadh, Saudi Arabia
| | - Khalid Hassan Ibnaouf
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Riyadh, Saudi Arabia.
| | - Nasir M Ahmad
- School of Physics, Universiti Sains Malaysia, Penang 11800, Malaysia; Laser and Optoelectronics Engineering Department, Dijlah University College, Baghdad, Iraq
| | - Ayed M Binzowaimil
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Riyadh, Saudi Arabia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Monika Bhattu
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Mohali-140413, Punjab, India
| | - M D Ramesh
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica-1000000, Chile
| |
Collapse
|
3
|
Yang W, Bu C, Zhao M, Li Y, Cui S, Yang J, Lian H. Full-Spectrum Utilization of ZIF-67/Ag NPs/NaYF 4:Yb,Er Photocatalysts for Efficient Degradation of Sulfadiazine: Upconversion Mechanism and DFT Calculation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309972. [PMID: 38279615 DOI: 10.1002/smll.202309972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/08/2024] [Indexed: 01/28/2024]
Abstract
In this work, novel ternary composite ZIF-67/Ag NPs/NaYF4:Yb,Er is synthesized by solvothermal method. The photocatalytic activity of the composite is evaluated by sulfadiazine (SDZ) degradation under simulated sunlight. High elimination efficiency of the composite is 95.4% in 180 min with good reusability and stability. The active species (h+, ·O2 - and ·OH) are identified. The attack sites and degradation process of SDZ are deeply investigated based on theoretical calculation and liquid chromatography-mass spectrometry analysis. The upconversion mechanism study shows that favorable photocatalytic effectiveness is attributed to the full utilization of sunlight through the energy transfer upconversion process and fluorescence resonance energy transfer. Additionally, the composite is endowed with outstanding light-absorbing qualities and effective photogenerated electron-hole pair separation thanks to the localized surface plasmon resonance effect of Ag nanoparticles. This work can motivate further design of novel photocatalysts with upconversion luminescence performance, which are applied to the removal of sulphonamide antibiotics in the environment.
Collapse
Affiliation(s)
- Weijin Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210023, China
| | - Cheng Bu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210023, China
| | - Min Zhao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210023, China
| | - Yafei Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210023, China
| | - Shihai Cui
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210023, China
| | - Jing Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210023, China
| | - Hongzhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
4
|
Lian P, Qin A, Liu Z, Ma H, Liao L, Zhang K, Li N. Facile Synthesis to Porous TiO 2 Nanostructures at Low Temperature for Efficient Visible-Light Degradation of Tetracycline. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:943. [PMID: 38869568 PMCID: PMC11173820 DOI: 10.3390/nano14110943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/11/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024]
Abstract
In this study, nanoporous TiO2 with hierarchical micro/nanostructures was synthesized on a large scale by a facile one-step solvothermal method at a low temperature. A series of characterizations was performed and carried out on the as-prepared photocatalysts, which were applied to the degradation of the antibiotic tetracycline (TC). The results demonstrated that nanoporous TiO2 obtained at a solvothermal temperature of 100 °C had a spherical morphology with high crystallinity and a relatively large specific surface area, composed of a large number of nanospheres. The nanoporous TiO2 with hierarchical micro/nanostructures exhibited excellent photocatalytic degradation activity for TC under simulated sunlight. The degradation rate was close to 100% after 30 min of UV light irradiation, and reached 79% only after 60 min of visible light irradiation, which was much better than the photodegradation performance of commercial TiO2 (only 29%). Moreover, the possible intermediates formed during the photocatalytic degradation of TC were explored by the density functional theory calculations and HPLC-MS spectra. Furthermore, two possible degradation routes were proposed, which provided experimental and theoretical support for the photocatalytic degradation of TC. In this study, we provide a new approach for the hierarchical micro/nanostructure of nanoporous TiO2, which can be applied in industrial manufacturing fields.
Collapse
Affiliation(s)
- Peng Lian
- Key Laboratory of New Processing Technology for Nonferrous Metals & Materials, Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Materials Science & Engineering, Guilin University of Technology, Guilin 541004, China; (P.L.); (L.L.); (K.Z.)
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China; (Z.L.); (H.M.)
| | - Aimiao Qin
- Key Laboratory of New Processing Technology for Nonferrous Metals & Materials, Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Materials Science & Engineering, Guilin University of Technology, Guilin 541004, China; (P.L.); (L.L.); (K.Z.)
| | - Zhisen Liu
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China; (Z.L.); (H.M.)
| | - Hao Ma
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China; (Z.L.); (H.M.)
| | - Lei Liao
- Key Laboratory of New Processing Technology for Nonferrous Metals & Materials, Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Materials Science & Engineering, Guilin University of Technology, Guilin 541004, China; (P.L.); (L.L.); (K.Z.)
| | - Kaiyou Zhang
- Key Laboratory of New Processing Technology for Nonferrous Metals & Materials, Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Materials Science & Engineering, Guilin University of Technology, Guilin 541004, China; (P.L.); (L.L.); (K.Z.)
| | - Ning Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China; (Z.L.); (H.M.)
| |
Collapse
|
5
|
Baran T, Aresta M, Comparelli R, Dibenedetto A. Gas-Phase Photocatalytic Coprocessing of CO 2 - H 2O (v) to Energy Products Promoted by the n,n-Junction In 2O 3@g-C 3N 4 under VIS-Light. CHEMSUSCHEM 2024:e202400661. [PMID: 38787340 DOI: 10.1002/cssc.202400661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
Carbon dioxide capture and utilization is a strategic technology for moving away from fossil-C. The conversion of CO2 into fuels demands energy and hydrogen that cannot be sourced from fossil-C. Co-processing of CO2 and water under solar irradiation will have a key role in the long-term for carbon-recycling and energy products production. This article discusses the synthesis, characterization and application of the two-phase composite photocatalyst, In2O3@g-C3N4, formed by thermal condensation of melamine in the presence of indium(III)nitrate. The composite exhibits a n,n-heterojunction between two n-type semiconductors, g-C3N4 and In2O3, leading to a more efficient charge separation. The composite has a flat band potential enabling it to effectively catalyze the reduction of CO2 in the gas phase to produce CO, CH4 and CH3OH. While the composite's overall photocatalytic efficiency is comparable to that of neat g-C3N4, its ability to promote multielectron-transfer and Proton Coupled to Electron Transfer (PCET) suggests that there is a potential for further optimization of its properties. The use of labelled 13CO2 has allowed us to clearly exclude that the reduced species are derived from the photocatalyst decomposition or the degradation of contaminants.
Collapse
Affiliation(s)
- Tomasz Baran
- Innovative Catalysis for Carbon Recycling-IC2R, Tecnopolis, Lab 019-020, via Casamassima km 3, 70010, Valenzano-BA, Italy
| | - Michele Aresta
- Innovative Catalysis for Carbon Recycling-IC2R, Tecnopolis, Lab 019-020, via Casamassima km 3, 70010, Valenzano-BA, Italy
| | - Roberto Comparelli
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, S. S. Bari, c/o Dipartimento di Chimica, Via Orabona 4, 70126, Bari, Italy
| | - Angela Dibenedetto
- CIRCC, via Celso Ulpiani 27, 70126, Bari, Italy
- Department of Chemistry, University of Bari Aldo Moro, Campus Universitario, Bari, 70125, Italy
| |
Collapse
|
6
|
Jing S, Wang H, Wang A, Cheng R, Liang H, Chen F, Brouzgou A, Tsiakaras P. Surface plasmon resonance Bismuth-modified NH 2-UiO-66 with enhanced photocatalytic tetracycline degradation performance. J Colloid Interface Sci 2024; 655:120-132. [PMID: 37931552 DOI: 10.1016/j.jcis.2023.10.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
For nearly a century, the misuse of antibiotics has gradually polluted water and threatened human health. Photocatalysis is considered an efficient way to remove antibiotics from water. Zirconium-based metal-organic frameworks have attracted much attention as promising photocatalysts for the degradation of antibiotics. However, single Zirconium-based metal-organic frameworks can still not achieve a more satisfactory photocatalytic efficiency, due to poor light absorption and charge separation efficiency. In this study, a novel metal-loaded metal-organic frameworks material was explored. As a potential photocatalytic material, the performance of NH2-UiO-66 in the photocatalytic degradation of tetracycline was greatly improved just by the loading of a single metal. Bismuth/NH2-UiO-66 photocatalysts of various compositions were physicochemically (TEM, SEM, XRD, XPS, BET, FTIR, UV-VIS, PL), and electrochemically (electrochemical impedance spectroscopy, photocurrent response) characterized. We evaluated the photocatalytic performance of Bismuth/NH2-UiO-66 composites by measuring their ability towards tetracycline decomposition in simulated sunlight irradiation conditions. The experimental results indicated that the introduction of metal Bismuth significantly boosts the photocatalytic activity of the composite catalysts. The final degradation rate of Bismuth/NH2-UiO-66 for tetracycline was found to be 95.8%, namely 2.7 times higher than pure NH2-UiO-66. This behavior is due to the surface plasmon resonance effect of Bismuth, which ameliorates the photocatalyst's electron-hole separation and strengthens the charge transfer. Apart from that, the presence of Bismuth magnifies the visible-light absorption range of Bismuth/NH2-UiO-66. In this study, an innovative approach for designing efficient and cost-effective metal-modified metal-organic frameworks photocatalysts is proposed.
Collapse
Affiliation(s)
- Shengyu Jing
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China; Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Volos, Greece
| | - Haoran Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Anhu Wang
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China; School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221008, China
| | - Ruolin Cheng
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China
| | - Huagen Liang
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China; School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221008, China.
| | - Fu Chen
- School of Public Administration, Hohai University, Nanjing 210098, China.
| | - Angeliki Brouzgou
- Department of Energy Systems, Faculty of Technology, University of Thessaly, Geopolis, 41500 Larisa, Greece
| | - Panagiotis Tsiakaras
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Volos, Greece.
| |
Collapse
|
7
|
Wang W, Qiang W, Chen C, Sun D. NH 2-MIL-125-Derived N-Doped TiO 2@C Visible Light Catalyst for Wastewater Treatment. Polymers (Basel) 2024; 16:186. [PMID: 38256985 PMCID: PMC10820814 DOI: 10.3390/polym16020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The utilization of titanium dioxide (TiO2) as a photocatalyst for the treatment of wastewater has attracted significant attention in the environmental field. Herein, we prepared an NH2-MIL-125-derived N-doped TiO2@C Visible Light Catalyst through an in situ calcination method. The nitrogen element in the organic connector was released through calcination, simultaneously doping into the sample, thereby enhancing its spectral response to cover the visible region. The as-prepared N-doped TiO2@C catalyst exhibited a preserved cage structure even after calcination, thereby alleviating the optical shielding effect and further augmenting its photocatalytic performance by increasing the reaction sites between the catalyst and pollutants. The calcination time of the N-doped TiO2@C-450 °C catalyst was optimized to achieve a balance between the TiO2 content and nitrogen doping level, ensuring efficient degradation rates for basic fuchsin (99.7%), Rhodamine B (89.9%) and tetracycline hydrochloride (93%) within 90 min. Thus, this study presents a feasible strategy for the efficient degradation of pollutants under visible light.
Collapse
Affiliation(s)
- Wenbin Wang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (W.W.); (W.Q.); (C.C.)
- Guizhou Panjiang Civil Explosion Co., Ltd., Guiyang 551404, China
| | - Wei Qiang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (W.W.); (W.Q.); (C.C.)
| | - Chuntao Chen
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (W.W.); (W.Q.); (C.C.)
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (W.W.); (W.Q.); (C.C.)
| |
Collapse
|
8
|
Zhang B, Meng Q, Lei Y, Wu G, Xu J, Meng X, Wu J, Hou H. Highly porous BiOBr@NU-1000 Z-scheme heterojunctions for synergistic efficient adsorption and photocatalytic degradation of tetracycline. Dalton Trans 2023; 52:17854-17860. [PMID: 37975215 DOI: 10.1039/d3dt02963h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Designing an effective photoactive heterojunction having dual benefits towards photoenergy conversion and pollutant adsorption is regarded as an affordable, green method for eliminating tetracycline (TC) from wastewater. In this regard, a series of BiOBr@NU-1000 (BNU-X, X = 1, 2 and 3) heterojunction photocatalysts are constructed. BNU-X preserves the original skeleton structure of the parent NU-1000, and its high porosity and specific surface area enable superior TC adsorption. At the same time, BNU-X is an effective Z-scheme photocatalyst that improves light trapping, promotes photoelectron-hole separation, and shows excellent photocatalytic degradation efficiency towards TC with the value of the photodegradation kinetic rate constant k being 2.2 and 24.8 times those of NU-1000 and BiOBr, respectively. The significant increase in the photocatalytic activity is ascribed to the construction of an efficient Z-scheme photocatalyst, which promotes the formation of superoxide radicals (˙O2-) and singlet oxygen (1O2) as the main oxidative species in the oxidation system. This research has the advantage of possibilities for the development of porous Z-scheme photocatalysts based on photoactive MOF materials and inorganic semiconductors for the self-purification and photodegradation of organic contaminants.
Collapse
Affiliation(s)
- Bin Zhang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.
| | - Qing Meng
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.
| | - Ying Lei
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.
| | - Gaigai Wu
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.
| | - Jinghan Xu
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.
| | - Xiangru Meng
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.
| | - Jie Wu
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.
| | - Hongwei Hou
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.
| |
Collapse
|
9
|
Wang S, Tuo B, Wang J, Mo Y. Research progress of TiO 2-based photocatalytic degradation of wastewater: bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125417-125438. [PMID: 38015394 DOI: 10.1007/s11356-023-31236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
The pollution caused by modernization and industrialization has caused serious harm to the biodiversity of the earth. TiO2-based photocatalyst has been widely studied as an effective and sustainable water environment remediation material. In this study, we analyzed the status and research trends of TiO2-based photocatalytic degradation of wastewater in depression from 2003 to 2023 to provide a reference for further research. "Doping", "Modification" and "Heterojunction" were used as keywords, and 817 related academic literatures were screened out by using Web of Science database. Through the visualization software VOSviewer and CiteSpace, the authors, institutions and literature keywords were clustered. The results show that since 2008, the annual number of published papers on TiO2-based photocatalytic degradation of wastewater has increased from 9 to 114. Among them, China has published 432 articles and made great contributions, and there are many representative research teams. Chinese universities are the main body to study TiO2-based photocatalytic degradation of wastewater, but the cooperation between universities is not as close as that abroad. This paper comprehensively analyzes the research hotspots of TiO2-based photocatalytic degradation of wastewater, such as the doping of TiO2 and the construction of different types of heterojunctions of TiO2. It is expected that these analysis results will provide new research ideas for researchers to carry out future research on related topics and let researchers know in-depth research institutions and possible collaborators to conduct academic exchanges and discussions with active institutions.
Collapse
Affiliation(s)
- Shengqing Wang
- College of Mining, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Biyang Tuo
- College of Mining, Guizhou University, Guiyang, 550025, People's Republic of China.
- National and Local Joint Laboratory for Effective Utilization of Mineral Resources in Karst Area, Guiyang, 550025, People's Republic of China.
| | - Jianli Wang
- College of Metallurgy and Material Engineering, Hunan University of Technology, Zhuzhou, 412000, People's Republic of China
| | - Yuying Mo
- College of Mining, Guizhou University, Guiyang, 550025, People's Republic of China
| |
Collapse
|