1
|
Kong F, Wang W, Wang X, Yang H, Tang J, Li Y, Shi J, Wang S. Performance and mechanism of nano Fe-Al bimetallic oxide enhanced constructed wetlands for the treatment of Cr(VI)-contaminated wastewater. ENVIRONMENTAL RESEARCH 2025; 271:121154. [PMID: 39971118 DOI: 10.1016/j.envres.2025.121154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/25/2025] [Accepted: 02/17/2025] [Indexed: 02/21/2025]
Abstract
Enhancing the synergistic interactions between substrates and microorganisms in constructed wetlands (CWs) represents a promising approach for treating heavy metal-contaminated wastewater. Multifunctional nanomaterials may play a significant role in this process. However, their impacts and mechanisms in this context remain unclear. In this study, artificial zeolite spheres loaded with Fe-Al double metal oxide (Fe-Al-NBMO) were synthesized and utilized in the CW to treat Cr(VI)-contaminated wastewater. Adsorption experiments demonstrated that the adsorption capacity of Fe-Al-NBMO loaded substrate for Cr(VI) was 988.43 mg/kg at an initial concentration of 30 mg/L, 361, and 37 times higher than that of gravel and carrier, respectively. The CW experiment indicated that the Cr(VI) effluent concentration in CW-ZL with Fe-Al-NBMO substrate did not exceed the integrated wastewater discharge standard (GB8978-1996) (0.5 mg/L) at an influent concentration of 50 mg/L. The introduction of the Fe-Al-NBMO substrate promoted microbial growth and increase the Extracellular Polymeric Substances (EPS) and other metabolite contents, thereby enhancing the microbial adsorption of Cr(VI). Furthermore, the removal performance of Cr(VI) was enhanced by the increase in resistant microorganisms (Hyphomicrobium and Rhodopseudomonas) and functional genes. Notably, metaproteomic analysis revealed that the elevated abundance of NADH-quinone oxidoreductase (nuoB, nuoC, nuoD, nuoE, nuoF, and nuoG), reductive coenzymes (fbp, ALDO, mcrA, and cdhC), metabolic pathways of sulfur (Cysp), and glutathione transferase (GsiB, frmA, and gfa) contributed to Cr(VI) removal. Our results provide a robust strategy for treating Cr(VI)-contaminated wastewater by CWs with Fe-Al-NBMO loaded substrate.
Collapse
Affiliation(s)
- Fanlong Kong
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China
| | - Wenpeng Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China
| | - Xiaoyan Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Hong Yang
- Department of Geography and Environmental Science, University of Reading, Reading, RG6 6AB, UK
| | - Jianguo Tang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yue Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China
| | - Jiaxin Shi
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China.
| | - Sen Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China.
| |
Collapse
|
2
|
Jiao X, Jia K, Yu Y, Liu D, Zhang J, Zhang K, Zheng H, Sun X, Tong Y, Wei Q, Lv P. Nanocellulose-based functional materials towards water treatment. Carbohydr Polym 2025; 350:122977. [PMID: 39647961 DOI: 10.1016/j.carbpol.2024.122977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/01/2024] [Accepted: 11/10/2024] [Indexed: 12/10/2024]
Abstract
Water resources are important ecological resources for human survival. To date, advanced water purification technology has become one of the focus of global attention due to the continuous deterioration of the environment and the serious shortage of freshwater resources. Recently, nanocellulose, as a kind of sustainable and carbon-neutral biopolymer, has not only the properties of cellulose, but also the important nature of nanomaterials, including large specific surface area, tailorable surface chemistry, excellent mechanical flexibility, biodegradability, and environmental compatibility. Herein, this review covers several methods of extraction and preparation of nanocellulose and the functional modification strategies. Subsequently, we systematically review the application and latest research progress of nanocellulose-based functional material towards water treatment, from micro/nanoparticles filtration, dyes/organics adsorption/degradation, heavy metal ions adsorption/detection and oil-water separation to seawater desalination. Furthermore, scalable and low-cost nanocellulose synthesis strategies are discussed. Finally, the challenges and opportunities of nanocellulose water purification substrate in industrial application and emerging directions are briefly discussed. This review is expected to provide new insights for the application of advanced functional materials based on nanocellulose in water treatment and environmental remediation, and promote rapid cross-disciplinary development.
Collapse
Affiliation(s)
- Xiaohui Jiao
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Keli Jia
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yajing Yu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Danyu Liu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jingli Zhang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Kai Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, eQilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Huanda Zheng
- National Supercritical Fluid Dyeing Technology Research Center, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Xiaohang Sun
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Yingjia Tong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Pengfei Lv
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
3
|
Li Q, Ye L, Leng Y, Yu K, Hu E, Lu F, Xie R, Jiang S, Gao H, Bao R, Dai F, Lan G. Nanofiber-based Multifunctional Microspheres for Rapid Hemostasis and Microorganism Removal of Water. Adv Healthc Mater 2025; 14:e2403679. [PMID: 39663705 DOI: 10.1002/adhm.202403679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/25/2024] [Indexed: 12/13/2024]
Abstract
Constructing hemostats capable of effectively controlling severe hemorrhage from irregular wounds presents significant challenges and imperatives. In this study, a novel approach is introduced using nanofibrous chitin microspheres (NCM) that are compressed to 60% strain (NCM-60%) to amplify their water-initiated expansion performance. This unique capacity allows NCM-60% to efficiently conform to and fill irregular bleeding cavities, even those of varying depths and curvatures, thereby promoting rapid blood coagulation at deep hemorrhage sites. NCM-60% exhibits effective control of severe femoral artery and "J"-shaped liver hemorrhages in 151 ± 6 s and 68 ± 15 s, respectively, revealing its exceptional hemostatic efficacy. Furthermore, NCM-60% exhibited promising capabilities in removing microbes from water, achieving removal rates of over 96% of bacteria. Blood compatibility assessments and cytotoxicity tests further confirmed the favorable biocompatibility of NCM-60%. Importantly, NCM-60% is found to biodegrade and be absorbed in vivo within 12 weeks. This study represents the first instance of leveraging chitin nanofiber-based biomaterials to design water-initiated expansion micro-hemostat, and integrate hemostatic functions with waterborne microorganism removal, thereby expanding the potential applications of micro-nanostructural materials in emergency first-aid scenarios.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Resource Insects, College of Sericulture Textile and Biomass Science, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Lingjun Ye
- State Key Laboratory of Resource Insects, College of Sericulture Textile and Biomass Science, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Yanqiu Leng
- State Key Laboratory of Resource Insects, College of Sericulture Textile and Biomass Science, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Kun Yu
- State Key Laboratory of Resource Insects, College of Sericulture Textile and Biomass Science, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Enling Hu
- State Key Laboratory of Resource Insects, College of Sericulture Textile and Biomass Science, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Fei Lu
- State Key Laboratory of Resource Insects, College of Sericulture Textile and Biomass Science, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Ruiqi Xie
- State Key Laboratory of Resource Insects, College of Sericulture Textile and Biomass Science, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Sha Jiang
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Hang Gao
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Rong Bao
- The Ninth People's Hospital of Chongqing, Chongqing, 400715, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, College of Sericulture Textile and Biomass Science, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Guangqian Lan
- State Key Laboratory of Resource Insects, College of Sericulture Textile and Biomass Science, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| |
Collapse
|
4
|
Cheng H, Zheng X, Zhu Y, Wang P, Zhu J, Wei J, Liu Z, Huang C. Stabilization of sulfidated nano zerovalent iron with biochar: Enhanced transport and application for hexavalent chromium removal from water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123045. [PMID: 39481156 DOI: 10.1016/j.jenvman.2024.123045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/06/2024] [Accepted: 10/20/2024] [Indexed: 11/02/2024]
Abstract
Nano zerovalent iron (nZVI) has been broadly used in the treatment of chromium (Cr) pollution. However, conventional nZVI particles are prone to surface oxidation and particle agglomeration, limiting their effectiveness in contaminant removal. To address these issues, sulfidated nZVI (S-nZVI) was synthesized on the corn stover biochar (BC) surface for rapid removal of Cr(VI) from water. Sedimentation and column transport experiments demonstrated that S-nZVI@BC exhibits excellent dispersion and transport properties, efficiently removing Cr(VI) in the pH range of 2.5-5.0 and showing minimal impact from dissolved oxygen. The Fe0, Fe(Ⅱ), and S2- components of the material, along with the leached Fe2+ ions, contributed to the Cr(VI) removal. A portion of the removed Cr(VI) was reduced to Cr(III) in solution, while another portion was adsorbed on the material's surface through precipitation, with 42.0% of Cr being adsorbed within 30 min. Cycling and water matrix interference experiments further demonstrated the material's excellent reusability and resistance to interference. Notably, the continuous Cr(VI) removal capability in column experiments and the reactivation potential of S-nZVI@BC highlight its promise for practical applications. Future studies are suggested to explore the ecotoxicological effects of the S-nZVI@BC and its capacity for the simultaneous removal of multiple contaminants.
Collapse
Affiliation(s)
- Hao Cheng
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xiaoyu Zheng
- Hunan Changsha Ecological Environment Monitoring Center, Changsha, 410001, China
| | - Yi Zhu
- Hunan Changsha Ecological Environment Monitoring Center, Changsha, 410001, China
| | - Ping Wang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jian Zhu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jie Wei
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zili Liu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chao Huang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
5
|
Refaat A, Ibrahim MA, Shehata D, Elhaes H, Ibrahim A, Mamatkulov K, Arzumanyan G. Design, characterization and implementation of cost-effective sodium alginate/water hyacinth microspheres for remediation of lead and cadmium from wastewater. Int J Biol Macromol 2024; 277:133765. [PMID: 38992549 DOI: 10.1016/j.ijbiomac.2024.133765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/30/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
The aquatic plant water hyacinth was dried then cross-linked with sodium alginate to produce ionic cross-linked microspheres. The mechanism of controlling cadmium (Cd) and lead (Pb) in wastewater was tested by DFT at B3LYP level using LANL2DZ basis set. Modeling results indicated that the hydrated metals could interact with sodium alginate (SA)/water hyacinth (WH) microspheres through hydrogen bonding. Adsorption energies showed comparable results while total dipole moment and HOMO/LUMO band gap energy showed slight selectivity towards the remediation of Pb. FTIR spectra of cross-linked microspheres indicated that WH is forming a composite with SA to change its structure into a microsphere to remove Cd and Pb from water. Raman mapping revealed that the active sites along the surface of the microspheres enable for possible adsorption of metals through its surface. This finding is supported by molecular electrostatic potential and optical confocal microscopy. Atomic absorption spectroscopy results confirmed that the microspheres are more selective for Pb than Cd. It could be concluded that WH cross-linked with SA showed the potential to remove heavy metals through its unique active surface as confirmed by both molecular modeling and experimental findings.
Collapse
Affiliation(s)
- Ahmed Refaat
- Spectroscopy Department, National Research Centre, 33 El-Bohouth St., 12622 Dokki, Giza, Egypt; Molecular Modeling and Spectroscopy Laboratory, Centre of Excellence for Advanced Science, National Research Centre, 33 El-Bohouth St., 12622 Dokki, Giza, Egypt
| | - Medhat A Ibrahim
- Spectroscopy Department, National Research Centre, 33 El-Bohouth St., 12622 Dokki, Giza, Egypt; Molecular Modeling and Spectroscopy Laboratory, Centre of Excellence for Advanced Science, National Research Centre, 33 El-Bohouth St., 12622 Dokki, Giza, Egypt.
| | - Dina Shehata
- Physics Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 11757, Egypt
| | - Hanan Elhaes
- Physics Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 11757, Egypt
| | - Asmaa Ibrahim
- Physics Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 11757, Egypt
| | - Kahramon Mamatkulov
- Department of Raman Spectroscopy, Frank Lab. of Neutron Physics, Joint Institute for Nuclear Research, Russia
| | - Grigory Arzumanyan
- Department of Raman Spectroscopy, Frank Lab. of Neutron Physics, Joint Institute for Nuclear Research, Russia
| |
Collapse
|
6
|
Jiang R, Xiao M, Zhu HY, Zhao DX, Zang X, Fu YQ, Zhu JQ, Wang Q, Liu H. Sustainable chitosan-based materials as heterogeneous catalyst for application in wastewater treatment and water purification: An up-to-date review. Int J Biol Macromol 2024; 273:133043. [PMID: 38857728 DOI: 10.1016/j.ijbiomac.2024.133043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/30/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Water pollution is one of serious environmental issues due to the rapid development of industrial and agricultural sectors, and clean water resources have been receiving increasing attention. Recently, more and more studies have witnessed significant development of catalysts (metal oxides, metal sulfides, metal-organic frameworks, zero-valent metal, etc.) for wastewater treatment and water purification. Sustainable and clean catalysts immobilized into chitosan-based materials (Cat@CSbMs) are considered one of the most appealing subclasses of functional materials due to their high catalytic activity, high adsorption capacities, non-toxicity and relative stability. This review provides a summary of various upgrading renewable Cat@CSbMs (such as cocatalyst, photocatalyst, and Fenton-like reagent, etc.). As for engineering applications, further researches of Cat@CSbMs should focus on treating complex wastewater containing both heavy metals and organic pollutants, as well as developing continuous flow treatment methods for industrial wastewater using Cat@CSbMs. In conclusion, this review abridges the gap between different approaches for upgrading renewable and clean Cat@CSbMs and their future applications. This will contribute to the development of cleaner and sustainable Cat@CSbMs for wastewater treatment and water purification.
Collapse
Affiliation(s)
- Ru Jiang
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, Zhejiang 318000, PR China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Mei Xiao
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Hua-Yue Zhu
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, Zhejiang 318000, PR China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, Zhejiang 318000, PR China.
| | - Dan-Xia Zhao
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Xiao Zang
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Yong-Qian Fu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Jian-Qiang Zhu
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, PR China.
| | - Huan Liu
- School of Engineering, The University of British Columbia, Okanagan Campus, 1137 Alumni Avenue, Kelowna, British Columbia V1V 1V7, Canada
| |
Collapse
|
7
|
Wang X, Zheng Y, Ning P, Lynch I, Guo Z, Zhang P, Wu L. Synergetic effect of green synthesized NZVI@Chitin-modified ZSM-5 for efficient oxidative degradation of tetracycline. ENVIRONMENTAL RESEARCH 2024; 258:119360. [PMID: 38852830 DOI: 10.1016/j.envres.2024.119360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
The aggregation and limited activity of nanoscale zero-valent iron (NZVI) in aqueous media hinder its practical application. In this study, a cost-effective, environmentally friendly, robust, and efficient synthesis method for NZVI-based composite was developed. NZVI@Chitin-modified ZSM-5 (NZVI@C-ZSM) composite was facilely and greenly synthesized by loading NZVI into alkali-modified ZSM-5 molecular sieves after modifying with chitin as a surfactant and binder. NZVI@C-ZSM exhibited remarkable efficacy in TC removal, achieving a removal efficiency of 97.72% within 60 min. Compared with pristine NZVI, NZVI@C-ZSM demonstrated twice the removal efficiency, indicating that NZVI@C-ZSM effectively improved the dispersion and stability of NZVI. This enhancement provided more reactive sites for generating reactive oxygen species (ROS), significantly boosting catalytic activity and durability while reducing the potential risk of secondary pollution. An improved two-parameter pseudo-first-order kinetic model was used to effectively characterize the reaction kinetics. The mechanism for TC removal primarily involved an adsorption process and chemical oxidation-reduction reactions induced by hydroxyl radicals (•OH) and superoxide radicals (•O2-). Three potential degradation pathways for TC were suggested. Furthermore, NZVI@C-ZSM exhibited good resistance to interference, suggesting its broad potential for practical applications in complex environmental conditions. This study offers a viable material and method for addressing the issue of antibiotic-contaminated water, with potential applications in water resource management.
Collapse
Affiliation(s)
- Xiangyu Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yimin Zheng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Lisi Wu
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
8
|
Wang W, Wang H, Luoyang Y, Zhang G, Gao X, Li J, Li X, He M. Nitric Acid-Treated Blue Coke-Based Activated Carbon's Structural Characteristics and Its Application in Hexavalent Chromium-Containing Wastewater Treatment. Molecules 2023; 28:7986. [PMID: 38138476 PMCID: PMC10745564 DOI: 10.3390/molecules28247986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
This study primarily focused on the efficient transformation of low-priced blue coke powder into a high-capacity adsorbent and aimed to address the pollution issue of hexavalent chromium (Cr (VI))-laden wastewater and to facilitate the effective utilization of blue coke powder. A two-step method was utilized to fabricate a blue coke-based nitric acid-modified material (LCN), and the impact of nitric acid modification on the material's structure and its efficacy in treating Cr (VI)-contaminated wastewater was evaluated. Our experimental results illustrated that, under identical conditions, LCN exhibited superior performance for Cr (VI) treatment compared to the method employing only potassium hydroxide (LCK). The specific surface area and pore volume of LCN were 1.39 and 1.36 times greater than those of LCK, respectively. Further chemical composition analysis revealed that the functional group structure on the LCN surface was more conducive to Cr (VI) adsorption. The highest amount of Cr (VI) that LCN could bind was measured at 181.962 mg/g at 318 K. This was mostly due to chemisorption, which is dominated by redox reactions. The Cr (VI) removal process by LCN was identified to be a spontaneous, exothermic, and entropy-increasing process. Several tests on recycling and reuse showed that LCN is a stable and effective chromium-containing wastewater adsorbent, showing that it could be used in many situations.
Collapse
Affiliation(s)
- Wencheng Wang
- College of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
| | - Hua Wang
- College of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
- Shaanxi Provincial Key Laboratory of Clean Utilization of Low-Modified Coal, Yulin University, Yulin 719000, China
| | - Yunxuan Luoyang
- College of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
| | - Guotao Zhang
- College of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
| | - Xuchun Gao
- College of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
- Shaanxi Provincial Key Laboratory of Clean Utilization of Low-Modified Coal, Yulin University, Yulin 719000, China
| | - Jian Li
- College of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
| | - Xia Li
- College of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
| | - Miao He
- College of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
| |
Collapse
|