1
|
Cisneros-Ontiveros HG, Zubieta-Otero LF, Medellín-Castillo NA, Flores-Rojas AI, Rodriguez-Garcia ME. Extraction of bio-hydroxyapatite from devilfish (Loricariidae) for the fluoride and cadmium adsorption from water and its feasible photocatalytic properties. CHEMOSPHERE 2024; 366:143535. [PMID: 39413931 DOI: 10.1016/j.chemosphere.2024.143535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/27/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
In this study, the adsorption capacity of bio-hydroxyapatite (Bio-HAp) from devilfish for the removal of F- and Cd(II) from aqueous solutions was investigated. This material was synthesized according to a 2FI factorial experimental design by varying the extraction conditions for Bio-HAp, including the type of pretreatment (alkaline and peroxide), the calcination temperature from 550 to 850 °C, and the sonication process. The maximum adsorption capacities were 8.48 and 83.56 mg g-1 for F- and Cd(II), respectively. Statistical analysis showed the importance of the type of pretreatment, temperature, and sonication for adsorption. The predicted optimal conditions were Bio-HAp extracted from bone with peroxide pretreatment, calcination at 550 °C and sonication. The surface of the Bio-HAp was found to be mesoporous and basic in character. TGA, FT-IR and SEM-EDS characterizations confirmed the presence of F- and Cd(II) on the Bio-HAp surface and confirmed the adsorption mechanisms by electrostatic forces, ion exchange, and chemisorption. The Praunitz-Rake model of adsorption isotherm showed better agreement with the equilibrium adsorption data of F- and Cd(II) at pH 7. Furthermore, photodegradation experiments showed 100% degradation methylene blue (MB) under natural sunlight. This study indicates an effective photodegradation process, suggesting high adsorption capacity of the samples. The use of devilfish as an adsorbent promises to be a viable and sustainable option for the removal of fluoride and cadmium from water, and for use in photodegradation experiments.
Collapse
Affiliation(s)
- Hilda G Cisneros-Ontiveros
- Programa Multidisciplinario de Posgrado en Ciencias Ambientales, Agenda Ambiental, Universidad Autónoma de San Luis Potosí, Av. Dr. M Nava No. 201, Zona Universitaria S.L.P., 78210, Mexico
| | - Luis F Zubieta-Otero
- Posgrado en Ciencia e Ingeniería de Materiales, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro., 76230, Mexico.
| | - Nahum A Medellín-Castillo
- Centro de Investigación y Estudios de Posgrado, Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Av. Dr. M Nava No. 8, Zona Universitaria, S.L.P., 78290, Mexico.
| | - Alfredo I Flores-Rojas
- Centro de Investigación y Estudios de Posgrado, Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Av. Dr. M Nava No. 8, Zona Universitaria, S.L.P., 78290, Mexico
| | - Mario E Rodriguez-Garcia
- Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro., 76230, Mexico
| |
Collapse
|
2
|
Ren H, Shen S, Tan L, Wu J, Wang D, Liu W. Nitric oxide mitigates the phytotoxicity of imidazolium-based ionic liquids in Arabidopsis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116845. [PMID: 39116690 DOI: 10.1016/j.ecoenv.2024.116845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Ionic liquids (ILs) have many beneficial properties that are extensively used in various fields. Despite their utility, the phytotoxic aspects of ILs are poorly known. This is especially true at the transcriptomic level and the role of nitric oxide (NO) in this process. Herein, we studied the mechanism by which endogenous NO reduces the toxicity of ILs in Arabidopsis. We examined the effects of two imidazolium-based ILs (IILs) on three Arabidopsis lines, each characterized by distinct endogenous NO levels, using a combination of physiological and transcriptomics methods. IILs impaired seed germination, seedling development, chlorophyll content, and redox homeostasis in Arabidopsis. Notably, 1,3-dibutyl imidazole bromide had greater toxicity than 1-butyl-3-methylimidazolium chloride. Nox1, a mutant with an elevated NO level, had enhanced resistance, while nia1nia2, a mutant with a diminished NO level, had increased susceptibility compared to the wild type. RNA sequencing results suggested that NO mitigates IILs-induced phytotoxicity by modulating the metabolism of chlorophyll and secondary metabolites, and by bolstering the antioxidant defense system. These findings illustrate the complex molecular networks that respond to IIL stress and reveal the potential of endogenous NO as a mitigating factor in plant stress physiology.
Collapse
Affiliation(s)
- Haike Ren
- Shanxi Normal University, Taiyuan, Shanxi 030006, China
| | - Shoujie Shen
- Shanxi Normal University, Taiyuan, Shanxi 030006, China
| | - Liru Tan
- Shanxi Normal University, Taiyuan, Shanxi 030006, China
| | - Jinwen Wu
- Shanxi Normal University, Taiyuan, Shanxi 030006, China
| | - Dongsheng Wang
- Shanxi Normal University, Taiyuan, Shanxi 030006, China.
| | - Weizhong Liu
- Shanxi Normal University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
3
|
Zango ZU, Khoo KS, Ali AF, Abidin AZ, Zango MU, Lim JW, Wadi IA, Eisa MH, Alhathlool R, Abu Alrub S, Aldaghri O, Suresh S, Ibnaouf KH. Development of inorganic and mixed matrix membranes for application in toxic dyes-contaminated industrial effluents with in-situ treatments. ENVIRONMENTAL RESEARCH 2024; 256:119235. [PMID: 38810826 DOI: 10.1016/j.envres.2024.119235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/13/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Dyes are the most ubiquitous organic pollutants in industrial effluents. They are highly toxic to both plants and animals; thus, their removal is paramount to the sustainability of ecosystem. However, they have shown resistance to photolysis and various biological, physical, and chemical wastewater remediation processes. Membrane removal technology has been vital for the filtration/separation of the dyes. In comparison to polymeric membranes, inorganic and mixed matrix (MM) membranes have shown potentials to the removal of dyes. The inorganic and MM membranes are particularly effective due to their high porosity, enhanced stability, improved permeability, higher enhanced selectivity and good stability and resistance to harsh chemical and thermal conditions. They have shown prospects in filtration/separation, adsorption, and catalytic degradation of the dyes. This review highlighted the advantages of the inorganic and MM membranes for the various removal techniques for the treatments of the dyes. Methods for the membranes production have been reviewed. Their application for the filtration/separation and adsorption have been critically analyzed. Their application as support for advanced oxidation processes such as persulfate, photo-Fenton and photocatalytic degradations have been highlighted. The mechanisms underscoring the efficiency of the processes have been cited. Lastly, comments were given on the prospects and challenges of both inorganic and MM membranes towards removal of the dyes from industrial effluents.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria; Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria.
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Ahmed Fate Ali
- Department of Environmental Management, Bayero University, 3011, Kano State, Nigeria
| | - Asmaa Zainal Abidin
- Department of Chemistry and Biology, Centre for Defense Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000, Kuala Lumpur, Malaysia
| | - Muttaqa Uba Zango
- Department of Civil Engineering, Kano University of Science and Technology, Wudil, P.M.B. 3244, Kano, Nigeria
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Ismael A Wadi
- Prince Sattam Bin Abdulaziz University, Basic Science Unit, Alkharj, 16278, Alkharj, Saudi Arabia
| | - M H Eisa
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia
| | - Raed Alhathlool
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia
| | - S Abu Alrub
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia
| | - Osamah Aldaghri
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia
| | - Sagadevan Suresh
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Khalid Hassan Ibnaouf
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia.
| |
Collapse
|
4
|
Miyah Y, El Messaoudi N, Benjelloun M, Acikbas Y, Şenol ZM, Ciğeroğlu Z, Lopez-Maldonado EA. Advanced applications of hydroxyapatite nanocomposite materials for heavy metals and organic pollutants removal by adsorption and photocatalytic degradation: A review. CHEMOSPHERE 2024; 358:142236. [PMID: 38705409 DOI: 10.1016/j.chemosphere.2024.142236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
This comprehensive review delves into the forefront of scientific exploration, focusing on hydroxyapatite-based nanocomposites (HANCs) and their transformative role in the adsorption of heavy metals (HMs) and organic pollutants (OPs). Nanoscale properties, including high surface area and porous structure, contribute to the enhanced adsorption capabilities of HANCs. The nanocomposites' reactive sites facilitate efficient contaminant interactions, resulting in improved kinetics and capacities. HANCs exhibit selective adsorption properties, showcasing the ability to discriminate between different contaminants. The eco-friendly synthesis methods and potential for recyclability position the HANCs as environmentally friendly solutions for adsorption processes. The review acknowledges the dynamic nature of the field, which is characterized by continuous innovation and a robust focus on ongoing research endeavors. The paper highlights the HANCs' selective adsorption capabilities of various HMs and OPs through various interactions, including hydrogen and electrostatic bonding. These materials are also used for aquatic pollutants' photocatalytic degradation, where reactive hydroxyl radicals are generated to oxidize organic pollutants quickly. Future perspectives explore novel compositions, fabrication methods, and applications, driving the evolution of HANCs for improved adsorption performance. This review provides a comprehensive synthesis of the state-of-the-art HANCs, offering insights into their diverse applications, sustainability aspects, and pivotal role in advancing adsorption technologies for HMs and OPs.
Collapse
Affiliation(s)
- Youssef Miyah
- Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, University Sidi Mohamed Ben Abdellah, Fez-Morocco, Morocco; Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez-Morocco, Morocco.
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, 80000, Agadir, Morocco.
| | - Mohammed Benjelloun
- Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, University Sidi Mohamed Ben Abdellah, Fez-Morocco, Morocco
| | - Yaser Acikbas
- Department of Materials Science and Nanotechnology Engineering, Usak University, 64200, Usak, Turkey
| | - Zeynep Mine Şenol
- Sivas Cumhuriyet University, Faculty of Health Sciences, Department of Nutrition and Diet, 58140, Sivas, Turkey
| | - Zeynep Ciğeroğlu
- Department of Chemical Engineering, Faculty of Engineering, Usak University, 64300, Usak, Turkey
| | - Eduardo Alberto Lopez-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja, California, CP: 22390, Tijuana, Baja California, Mexico
| |
Collapse
|
5
|
Bernardino EG, Ferreira MEC, Bergamasco R, Yamaguchi NU. Photocatalyst of manganese ferrite and reduced graphene oxide supported on activated carbon from cow bone for wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4779-4796. [PMID: 38105329 DOI: 10.1007/s11356-023-31501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
The present research aimed to evaluate the photocatalytic activity of manganese ferrite (M) and reduced graphene oxide (G) supported on pulverized activated carbon from cow bone waste (PAC-MG). PAC-MG was characterized by different instrumental techniques. The efficiency of PAC-MG was evaluated using solar irradiation under different conditions of photocatalyst concentration, H2O2 concentration, and pH ranges for the discoloration of methylene blue dye (MB). The synergy between the nanomaterials potentiated the photocatalytic activity, reaching 85.5% of MB discoloration when using 0.25 g L-1 of catalyst at neutral pH with no oxidant needed. Furthermore, PAC-MG demonstrated excellent stability in 6 consecutive cycles. Finally, it is expected that the present study can add value to industrial waste and contribute to the development of novel water and wastewater treatment methods, ensuring water quality for human consumption and the environment.
Collapse
Affiliation(s)
- Eduarda Gameleira Bernardino
- Post-Graduation Program in Clean Technologies, Cesumar Institute of Science, Technology, and Innovation, Cesumar University, Maringá, Brazil
| | | | - Rosângela Bergamasco
- Department of Chemical Engineering, State University of Maringá, Maringá, Brazil
| | - Natália Ueda Yamaguchi
- Post-Graduation Program in Clean Technologies, Cesumar Institute of Science, Technology, and Innovation, Cesumar University, Maringá, Brazil.
| |
Collapse
|