1
|
Qu J, Peng W, Wang M, Cui K, Zhang J, Bi F, Zhang G, Hu Q, Wang Y, Zhang Y. Metal-doped biochar for selective recovery and reuse of phosphate from water: Modification design, removal mechanism, and reutilization strategy. BIORESOURCE TECHNOLOGY 2024; 407:131075. [PMID: 38996847 DOI: 10.1016/j.biortech.2024.131075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/18/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
Phosphorus (P) plays a crucial role in plant growth, which can provide nutrients for plants. Nonetheless, excessive phosphate can cause eutrophication of water, deterioration of aquatic environment, and even harm for human health. Therefore, adopting feasible adsorption technology to remove phosphate from water is necessary. Biochar (BC) has received wide attention for its low cost and environment-friendly properties. However, undeveloped pore structure and limited surface groups of primary BC result in poor uptake performance. Consequently, this work introduced the synthesis of pristine BC, parameters influencing phosphate removal, and corresponding mechanisms. Moreover, multifarious metal-doped BCs were summarized with related design principles. Meanwhile, mechanisms of selective phosphate adsorption by metal-doped BC were investigated deeply, and the recovery of phosphate from water, and the utilization of phosphate-loaded adsorbents in soil were critically presented. Finally, challenges and prospects for widespread applications of selective phosphate adsorption were proposed in the future.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wei Peng
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Mengning Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ke Cui
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jingdong Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Fuxuan Bi
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Guangshan Zhang
- College of Resource and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Qi Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, China.
| |
Collapse
|
2
|
Neweshy W, Planas D, Sanderson N, Couture RM. Longevity and efficacy of lanthanum-based P remediation under changing dissolved oxygen availability in a small eutrophic lake. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1336-1347. [PMID: 38766807 DOI: 10.1039/d3em00572k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
We set out to study the seasonal variations in porewater phosphorus and lanthanum concentrations in the dated sediment cores from a small eutrophic lake that has been treated with Phoslock, a lanthanum-modified bentonite (LMB) amendment. Three sites were sampled when the hypolimnion was either oxygenated or anoxic: (i) the lake's deepest point, (ii) a littoral site receiving inflows from the catchment, and (iii) a littoral site influenced by nearby septic tanks. Phosphate (PO43--P), lanthanum (La), iron (Fe), dissolved organic carbon (DOC) and sulfate (SO42-) were measured in porewater samples. An inverse diagenetic model was used to quantify fluxes of dissolved elements across the sediment-water interface as well as the net rate of their reactions along the porewater concentration gradients. Results show that porewater P and Fe underwent strong seasonal dynamics, while La did not. P fluxes, 20-fold higher at the deepest site than elsewhere in the basin, were influenced by anoxic conditions in the hypolimnion during summer and winter, suggesting that P mobility remained sensitive to redox fluctuations despite the addition of La. At the deepest site, fluxes of P across the sediment-water interface increased from 1 to 9 × 10-9 μmol cm-2 s-1 between spring and summer, while the rate of P production to the porewater also increased a hundredfold. These increases were concurrent with Fe mobilization. Finally, sediment dating shows that the fraction of P sequestered by La is buried under freshly deposited sediment at a rate of 2-3 mm per year. These results indicate that external P fluxes and erosion control remain crucial to maintain the longevity of the LMB treatment.
Collapse
Affiliation(s)
- Wessam Neweshy
- Département de Chimie, Université Laval, Canada and GRIL (Interuniversity Research Group in Limnology), Canada.
| | - Dolors Planas
- Département de Sciences Biologiques, Université de Québec à Montréal, Canada and GRIL (Interuniversity Research Group in Limnology), Canada
| | - Nicole Sanderson
- Département de Géographie, Université du Québec à Montréal, Canada and Centre de Recherche en Géochimie et Géodynamique (GEOTOP), Canada
| | - Raoul-Marie Couture
- Département de Chimie, Université Laval, Canada and GRIL (Interuniversity Research Group in Limnology), Canada.
| |
Collapse
|
3
|
Ouyang E, Xiang H, Zhao R, Yang H, He W, Zhang R. Structural design of La 2(CO 3) 3 loaded magnetic biochar for selective removal of phosphorus from wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123510. [PMID: 38325506 DOI: 10.1016/j.envpol.2024.123510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
High levels of phosphorus released into the environment can cause eutrophication issues in wastewater, therefore discharge concentrations of such element are regulated in many countries. This study addresses the pressing need for effective phosphorus removal methods by developing a novel La2(CO3)3 and MnFe2O4 loaded biochar composite (LMB). A remarkable adsorption capacity towards the three forms of phosphorus from wastewater, including phosphate, phosphite, and etidronic acid monohydrate (as a representative of organic phosphorus), was exhibited by LMB (88.20, 16.35, and 15.95 mg g-1, respectively). The high saturation magnetization value (50.17 emu g-1) highlighted the easy separability and recyclability of the adsorbent. The adsorption process was well described by the Langmuir isotherm model and the pseudo-second-order kinetic model, which mainly involved chemisorption. Characterization results confirm the effective loading of La2(CO3)3 with ligand exchange and electrostatic attraction identified as the primary mechanisms. Importantly, the LMB demonstrated exceptional selectivity for phosphorus in wastewater samples containing various substances, exhibiting minimal interference from competing ions (Cl-, NO3-, SO42-, and CO32-). These findings enhance the understanding of LMB's application in efficient wastewater phosphorus removal. Holding significant promise in wastewater remediation, the LMB acts as an effective adsorbent, contributing substantially to the prevention and control of various types of phosphorus pollutants, thereby mitigating wastewater eutrophication.
Collapse
Affiliation(s)
- Erming Ouyang
- School of Resources & Environment, Nanchang University, Nanchang, 330031, Jiangxi, People's Republic of China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, Jiangxi, People's Republic of China
| | - Hanrui Xiang
- School of Resources & Environment, Nanchang University, Nanchang, 330031, Jiangxi, People's Republic of China
| | - Rui Zhao
- School of Resources & Environment, Nanchang University, Nanchang, 330031, Jiangxi, People's Republic of China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, Jiangxi, People's Republic of China.
| | - Hongwei Yang
- School of Resources & Environment, Nanchang University, Nanchang, 330031, Jiangxi, People's Republic of China; Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, People's Republic of China
| | - Wanyuan He
- School of Resources & Environment, Nanchang University, Nanchang, 330031, Jiangxi, People's Republic of China
| | - Ruiyue Zhang
- School of Resources & Environment, Nanchang University, Nanchang, 330031, Jiangxi, People's Republic of China
| |
Collapse
|