1
|
Deng X, Chen G, Zhang C, Gao X, Sun B, Shan B. Manganese-modified biochar for sediment remediation: Effect, microbial community response, and mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125175. [PMID: 39442607 DOI: 10.1016/j.envpol.2024.125175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/20/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Heavy metal sediment pollution has become an increasingly serious problem associated with industrial development, so extensive studies have been conducted concerning their removal. Biochar has recently shown good potential for in-situ remediation of heavy metal-contaminated sediments. The heavy metal adsorption capacity of inexpensive biochar can be improved by loading it with metal oxides. In this study, manganese-modified biochar (MBC) was prepared by KMnO4-modified waste-activated sludge biochar and applied to immobilize Pb and Cd in sediments. Its effects on the sediment microbial community were also investigated. The Results showed that manganese modification of the biochar made it more conducive to the adsorption of heavy metals, owing to its higher specific surface area and graphitization structure, more active sites and oxygen-containing groups, and the presence of Mn2O3 crystal structure on the surface. The maximum adsorption capacities of this material for Pb2+ and Cd2+ in solution were 176.9 mg/g and 44.0 mg/g, respectively. The application of MBC to the remediation of heavy metal-contaminated sediments transformed Pb and Cd in the sediments from exchangeable to residual state. The F4 content of Pb in the sediments increased from 40.52%-42.36% to 49.11%-51.14% after application of 1% MBC, and to 63.94%-64.49% after application of 5% MBC. Correspondingly, the F1 content of Pb in the sediments decreased from 29.09%-30.68% to 17.43%-17.69% after the application of 5% MBC. Furthermore, MBC efficiently enriched the microbial biodiversity and affected the microbial population structure within 60 days. The relative abundance of uncultured f Symbiobacteraceae and Fonticella communities significantly increased after incubation. The results may provide empirical support for the combination of metal oxides and biochar for the remediation of heavy metal-contaminated sediments.
Collapse
Affiliation(s)
- Xudong Deng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guomin Chen
- State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin, 300072, China; Ecological Environment Bureau of Xiong'an New Area Management Committee of Hebei Province, Baoding, 071799, China
| | - Chao Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Xueping Gao
- State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin, 300072, China
| | - Bowen Sun
- State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin, 300072, China
| | - Baoqing Shan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
2
|
Mahdavi Z, Peighambardoust SJ, Foroughi M, Foroutan R, Ahmadi M, Ramavandi B. Enhancing fluoride ion removal from aqueous solutions and glass manufacturing wastewater using modified orange peel biochar magnetic composite with MIL-53. ENVIRONMENTAL RESEARCH 2024; 262:119825. [PMID: 39179142 DOI: 10.1016/j.envres.2024.119825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
In this study, we developed new adsorbents derived from orange peel biochar (BCOP) and enhanced them with CoFe2O4 magnetic nanoparticles (BCOP/CoFe2O4) and MIL-53(Al) (BCOP/CoFe2O4/MIL-53(Al)). These adsorbents were utilized to remove fluoride (FL) ions from aqueous solutions. We analyzed the properties of these adsorbents using a range of techniques, including FTIR, XRD, SEM, EDX-Map, VSM, Raman spectroscopy, and BET. Our findings indicate that the components interact effectively with one another. Specifically, the BCOP/CoFe2O4/MIL-53(Al) sample exhibited a specific surface area of 196.430 m2/g and a magnetic saturation value of 9.704 emu/g. The maximum FL ion adsorption capacities for BCOP, BCOP/CoFe2O4, and BCOP/CoFe2O4/MIL-53(Al) were 7.618, 16.330, and 37.320 mg/g, respectively, indicating that the modifications significantly enhanced the adsorption capacity. The optimum fluoride ion removal rates using BCOP, BCOP/CoFe2O4, and BCOP/CoFe2O4/MIL-53(Al) were 97.88%, 98.23%, and 99.06%, respectively, at adsorbent doses of 2.5, 1.5, and 0.8 g/L, contact times of 90, 70, and 50 minutes, pH 4, temperature 50°C, and a FL concentration of 10 mg/L. Thermodynamic studies revealed that the adsorption process was spontaneous and endothermic, with increased randomness between the adsorbent and fluoride ions. Kinetic analyses showed that fluoride ion adsorption by BCOP/CoFe2O4/MIL-53(Al) followed a pseudo-second-order (PSO) model, while BCOP and BCOP/CoFe2O4 followed a pseudo-first-order (PFO) model. Additionally, the equilibrium data for fluoride ion adsorption on BCOP/CoFe2O4/MIL-53(Al) adhered to the Freundlich model, whereas the other samples conformed to the Langmuir model. The study evaluates the effectiveness of BCOP, BCOP/CoFe2O4, and BCOP/CoFe2O4/MIL-53(Al) in removing FL ions from glass manufacturing wastewater, highlighting the superior performance of the magnetic composite due to its enhanced surface area and functional groups. Notably, the adsorbents demonstrated good regenerative capabilities, maintaining high performance over multiple adsorption cycles.
Collapse
Affiliation(s)
- Zahra Mahdavi
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| | | | - Mahsa Foroughi
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| | - Rauf Foroutan
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, 5166616471, Iran.
| | - Mehrshad Ahmadi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
3
|
Li Y, Wang S, Ouyang XF, Dang Z, Yin H. Acetate anions intercalated Fe/Mg-layered double hydroxides modified biochar for efficient adsorption of anionic and cationic heavy metal ions from polluted water. CHEMOSPHERE 2024; 362:142652. [PMID: 38936489 DOI: 10.1016/j.chemosphere.2024.142652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
The simultaneous removal of anionic and cationic heavy metals presents a challenge for adsorbents. In this study, acetate (Ac-) was utilized as the intercalating anion for layered double hydroxide (LDH) to prepare a novel biochar composite adsorbent (Ac-LB) designed for the adsorption of Pb(II), Cu(II), and As(V). By utilizing Ac- as the intercalating anion, the interlayer space of the LDH was enlarged from 0.803 nm to 0.869 nm, exposing more adsorption sites for the LDH and enhancing the affinity for heavy metals. The results of the adsorption experiments showed that the adsorption effect of Ac-LB on heavy metals was significantly improved compared to the original FeMg-LDH modified biochar composites (LB), and the maximum adsorption capacity of Pb(II), Cu(II), and As(V) were 402.70, 68.50, and 21.68 mg/g, respectively. Wastewater simulation tests further confirmed the promising application of Ac-LB for heavy metal adsorption. The analysis of the adsorption mechanism revealed that surface complexation, electrostatic adsorption, and chemical deposition were the main mechanisms of action between heavy metals (Pb(II) and Cu(II)) and Ac-LB. Additionally, Cu(II) ions underwent a homogeneous substitution reaction with Ac-LB. The adsorption process of As(V) by Ac-LB mainly relied on complexation and ion-exchange reactions. Lastly, the modification of the LDH structure by Ac- as an intercalating anion, thereby increasing the affinity for heavy metals, was further illustrated using density-functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Yingchao Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Shujia Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xiao Fang Ouyang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Amalina F, Krishnan S, Zularisam AW, Nasrullah M. Pristine and modified biochar applications as multifunctional component towards sustainable future: Recent advances and new insights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169608. [PMID: 38157898 DOI: 10.1016/j.scitotenv.2023.169608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Employing biomass for environmental conservation is regarded as a successful and environmentally friendly technique since they are cost-effective, renewable, and abundant. Biochar (BC), a thermochemically converted biomass, has a considerably lower production cost than the other conventional activated carbons. This material's distinctive properties, including a high carbon content, good electrical conductivity (EC), high stability, and a large surface area, can be utilized in various research fields. BC is feasible as a renewable source for potential applications that may achieve a comprehensive economic niche. Despite being an inexpensive and environmentally sustainable product, research has indicated that pristine BC possesses restricted properties that prevent it from fulfilling the intended remediation objectives. Consequently, modifications must be made to BC to strengthen its physicochemical properties and, thereby, its efficacy in decontaminating the environment. Modified BC, an enhanced iteration of BC, has garnered considerable interest within academia. Many modification techniques have been suggested to augment BC's functionality, including its adsorption and immobilization reliability. Modified BC is overviewed in its production, functionality, applications, and regeneration. This work provides a holistic review of the recent advances in synthesizing modified BC through physical, chemical, or biological methods to achieve enhanced performance in a specific application, which has generated considerable research interest. Surface chemistry modifications require the initiation of surface functional groups, which can be accomplished through various techniques. Therefore, the fundamental objective of these modification techniques is to improve the efficacy of BC contaminant removal, typically through adjustments in its physical or chemical characteristics, including surface area or functionality. In addition, this article summarized and discussed the applications and related mechanisms of modified BC in environmental decontamination, focusing on applying it as an ideal adsorbent, soil amendment, catalyst, electrochemical device, and anaerobic digestion (AD) promoter. Current research trends, future directions, and academic demands were available in this study.
Collapse
Affiliation(s)
- Farah Amalina
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Santhana Krishnan
- Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Songkhla 90110, Thailand
| | - A W Zularisam
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Mohd Nasrullah
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia.
| |
Collapse
|