1
|
Xiong Z, Zhang Y, Chen X, Peng L, Zou L, Liu B, Li Q. Mitigating the effects of polyethylene microplastics on Pisum sativum L. quality by applying microplastics-degrading bacteria: A field study. ENVIRONMENTAL RESEARCH 2024; 263:120201. [PMID: 39448013 DOI: 10.1016/j.envres.2024.120201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
Polyethylene microplastics (PE-MPs) have been widely reported for their adverse effects on soil ecosystems. However, there are fewer field studies on addressing PE-MPs contamination in soil. This study investigated the effects of PE-MPs on soil properties, rhizosphere soil microorganisms, and pea (Pisum sativum L.) nutrient composition in a field experiment and mitigated the effects of PE-MPs by adding MPs-degrading bacteria. The results showed that the addition of MPs-degrading bacteria mitigated the effects of PE-MPs on the hydrolyzable nitrogen content in the soil. In addition, the introduction of MPs-degrading bacteria resulted in an increase in the Shannon indices of microorganisms in the soil. This also effectively regulates the structure of the soil microbial community to be closest to that of normal soil. Notably, the addition of MPs-degrading bacteria increased the protein, starch, cellulose, and chlorophyll contents of pea grains. This study demonstrated the ability to improve the nutrient content of peas affected by MPs by adding MPs-degrading bacteria. This study contributes to our understanding of the effects of PE-MPs on soil-microbe-plant systems and provides new insights into the bioremediation of PE-MPs in agricultural soils.
Collapse
Affiliation(s)
- Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Yunfeng Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Bingliang Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Zhao H, Yue W, Cao C, Zhang BT, Zan Z, Lian G, Zheng F, Xu G, Dou J. Microbial production of methyl-uranium via the Wood-Ljungdahl pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176844. [PMID: 39396778 DOI: 10.1016/j.scitotenv.2024.176844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/22/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
The misuse of uranium is a major threat to human health and the environment. In microbial ecosystems, microbes deploy various strategies to cope with uranium-induced stress. However, the exact ecological strategies and mechanisms underlying uranium tolerance in microbes remain unclear. Therefore, this study aimed to investigate the survival strategies and tolerance mechanisms of microbial communities in uranium-contaminated soil and groundwater. Microbial co-occurrence networks and molecular biology techniques were used to analyze the properties of microbes in groundwater and soil samples from various depths of uranium-contaminated areas in Northwest China. Uranium pollution altered microbial ecological strategies. Uranium stress facilitated the formation of microbial community structures, leading to symbiosis. Furthermore, microbes primarily resisted uranium hazards by producing polysaccharides and phosphate groups that chelate uranium, releasing phosphate substances that precipitate uranium, and reducing U(VI) through sulfate- and iron-reducing processes. The relative abundance of metal-methylation genes in soil microorganisms positively correlated with uranium concentration, indicating that soil microorganisms can produce methyl uranium via the Wood-Ljungdahl pathway. Furthermore, soil and groundwater microorganisms demonstrated different responses to uranium stress. This study provides new insights into microbial responses to uranium stress and novel approaches for the bioremediation of uranium-contaminated sites.
Collapse
Affiliation(s)
- Hangzheng Zhao
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Weifeng Yue
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| | - Changming Cao
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Bo-Tao Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Ziyi Zan
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Guoxi Lian
- School of Environment, Beijing Normal University, Beijing 100875, China; Nuclear and Radiation Safety Center, Ministry of Ecology and Environment, Beijing 100082, China
| | - Fuxin Zheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Guangming Xu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Junfeng Dou
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| |
Collapse
|
3
|
MacGregor H, Fukai I, Ash K, Arkin AP, Hazen TC. Potential applications of microbial genomics in nuclear non-proliferation. Front Microbiol 2024; 15:1410820. [PMID: 39360321 PMCID: PMC11445143 DOI: 10.3389/fmicb.2024.1410820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Abstract
As nuclear technology evolves in response to increased demand for diversification and decarbonization of the energy sector, new and innovative approaches are needed to effectively identify and deter the proliferation of nuclear arms, while ensuring safe development of global nuclear energy resources. Preventing the use of nuclear material and technology for unsanctioned development of nuclear weapons has been a long-standing challenge for the International Atomic Energy Agency and signatories of the Treaty on the Non-Proliferation of Nuclear Weapons. Environmental swipe sampling has proven to be an effective technique for characterizing clandestine proliferation activities within and around known locations of nuclear facilities and sites. However, limited tools and techniques exist for detecting nuclear proliferation in unknown locations beyond the boundaries of declared nuclear fuel cycle facilities, representing a critical gap in non-proliferation safeguards. Microbiomes, defined as "characteristic communities of microorganisms" found in specific habitats with distinct physical and chemical properties, can provide valuable information about the conditions and activities occurring in the surrounding environment. Microorganisms are known to inhabit radionuclide-contaminated sites, spent nuclear fuel storage pools, and cooling systems of water-cooled nuclear reactors, where they can cause radionuclide migration and corrosion of critical structures. Microbial transformation of radionuclides is a well-established process that has been documented in numerous field and laboratory studies. These studies helped to identify key bacterial taxa and microbially-mediated processes that directly and indirectly control the transformation, mobility, and fate of radionuclides in the environment. Expanding on this work, other studies have used microbial genomics integrated with machine learning models to successfully monitor and predict the occurrence of heavy metals, radionuclides, and other process wastes in the environment, indicating the potential role of nuclear activities in shaping microbial community structure and function. Results of this previous body of work suggest fundamental geochemical-microbial interactions occurring at nuclear fuel cycle facilities could give rise to microbiomes that are characteristic of nuclear activities. These microbiomes could provide valuable information for monitoring nuclear fuel cycle facilities, planning environmental sampling campaigns, and developing biosensor technology for the detection of undisclosed fuel cycle activities and proliferation concerns.
Collapse
Affiliation(s)
| | - Isis Fukai
- Bredesen Center, University of Tennessee, Knoxville, TN, United States
| | - Kurt Ash
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
| | - Adam Paul Arkin
- University of California, Berkeley, Berkeley, CA, United States
| | - Terry C. Hazen
- Bredesen Center, University of Tennessee, Knoxville, TN, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
4
|
Gao W, Chen X, He J, Sha A, Ren Y, Wu P, Li Q. The impact of kaolin mining activities on bacterial diversity and community structure in the rhizosphere soil of three local plants. Front Microbiol 2024; 15:1424687. [PMID: 39314884 PMCID: PMC11417686 DOI: 10.3389/fmicb.2024.1424687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/22/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Thus far, the impact of kaolin mining activities on the surrounding native plants and rhizosphere microecology has not been fully understood. Methods In this study, we used 16S rRNA high-throughput sequencing to examine the impact of kaolin mining on the rhizosphere bacterial communities and functions of three local plant species: Conyza bonariensis, Artemisia annua, and Dodonaea viscosa. Results The results showed that kaolin mining significantly reduced the diversity of rhizosphere bacteria in these plants, as indicated by the Shannon, Simpson, Chao1, and observed species indices (p < 0.05). Kaolin mining had an impact on the recruitment of three rhizosphere bacteria native to the area: Actinoplanes, RB41, and Mycobacterium. These bacteria were found to be more abundant in the rhizosphere soil of three local plants than in bulk soil, yet the mining of kaolin caused a decrease in their abundance (p < 0.05). Interestingly, Ralstonia was enriched in the rhizosphere of these plants found in kaolin mining areas, suggesting its resilience to environmental stress. Furthermore, the three plants had different dominant rhizosphere bacterial populations in kaolin mining areas, such as Nocardioides, Pseudarthrobacter, and Sphingomonas, likely due to the unique microecology of the plant rhizosphere. Kaolin mining activities also caused a shift in the functional diversity of rhizosphere bacteria in the three local plants, with each plant displaying different functions to cope with kaolin mining-induced stress, such as increased abundance of the GlpM family and glucan-binding domain. Discussion This study is the first to investigate the effects of kaolin mining on the rhizosphere microecology of local plants, thus contributing to the establishment of soil microecological health monitoring indicators to better control soil pollution in kaolin mining areas.
Collapse
Affiliation(s)
- Wei Gao
- Clinical Medical College and Affiliated Hospital of Chengdu University, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| | - Xiaodie Chen
- Clinical Medical College and Affiliated Hospital of Chengdu University, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| | - Jing He
- Clinical Medical College and Affiliated Hospital of Chengdu University, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| | - Ajia Sha
- Clinical Medical College and Affiliated Hospital of Chengdu University, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| | - Yuanhang Ren
- Clinical Medical College and Affiliated Hospital of Chengdu University, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| | - Peng Wu
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qiang Li
- Clinical Medical College and Affiliated Hospital of Chengdu University, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Tang Y, Chen X, Hou L, He J, Sha A, Zou L, Peng L, Li Q. Effects of uranium mining on the rhizospheric bacterial communities of three local plants on the Qinghai-Tibet Plateau. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34335-1. [PMID: 39044055 DOI: 10.1007/s11356-024-34335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 07/05/2024] [Indexed: 07/25/2024]
Abstract
In this study, we used 16S high-throughput sequencing to investigate the effects of uranium mining on the rhizospheric bacterial communities and functions of three local plant species, namely, Artemisia frigida, Acorus tatarionwii Schott., and Salix oritrepha Schneid. The results showed that uranium mining significantly reduced the diversity of rhizospheric bacteria in the three local plant species, including the Shannon index and Simpson index (P < 0.05). Interestingly, we found that Sphingomonas and Pseudotrichobacter were enriched in the rhizosphere soil of the three local plants from uranium mining areas, indicating their important ecological role. The three plants were enriched in various dominant rhizospheric bacterial populations in the uranium mining area, including Vicinamidobacteriaceae, Nocardioides, and Gaiella, which may be related to the unique microecological environment of the plant rhizosphere. The rhizospheric bacterial community of A. tatarionwii plants from tailings and open-pit mines also showed a certain degree of differentiation, indicating that uranium mining is the main factor driving the differentiation of plant rhizosphere soil communities on the plateau. Functional prediction revealed that rhizospheric bacteria from different plants have developed different functions to cope with stress caused by uranium mining activities, including enhancing the translational antagonist Rof, the translation initiation factor 2B subunit, etc. This study explores for the first time the impact of plateau uranium mining activities on the rhizosphere microecology of local plants, promoting the establishment of effective soil microecological health monitoring indicators, and providing a reference for further soil pollution remediation in plateau uranium mining areas.
Collapse
Affiliation(s)
- Yuanmou Tang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Liming Hou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing He
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China.
| |
Collapse
|
6
|
Wei X, Chen H, Zhu F, Li J. Microbial community structure in an uranium-rich acid mine drainage site: implication for the biogeochemical release of uranium. Front Microbiol 2024; 15:1412599. [PMID: 38993490 PMCID: PMC11238263 DOI: 10.3389/fmicb.2024.1412599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
The generation of acid mine drainage (AMD) characterized by high acidity and elevated levels of toxic metals primarily results from the oxidation and dissolution of sulfide minerals facilitated by microbial catalysis. Although there has been significant research on microbial diversity and community composition in AMD, as well as the relationship between microbes and heavy metals, there remains a gap in understanding the microbial community structure in uranium-enriched AMD sites. In this paper, water samples with varying levels of uranium pollution were collected from an abandoned stone coal mine in Jiangxi Province, China during summer and winter, respectively. Geochemical and high-throughput sequencing analyses were conducted to characterize spatiotemporal variations in bacterial diversity and community composition along pollution groups. The results indicated that uranium was predominantly concentrated in the AMD of new pits with strong acid production capacity, reaching a peak concentration of 9,370 μg/L. This was accompanied by elevated acidity and concentrations of iron and total phosphorus, which were identified as significant drivers shaping the composition of bacterial communities, rather than fluctuations in seasonal conditions. In an extremely polluted environment (pH < 3), bacterial diversity was lowest, with a predominant presence of acidophilic iron-oxidizing bacteria (such as Ferrovum), and a portion of acidophilic heterotrophic bacteria synergistically coexisting. As pollution levels decreased, the microbial community gradually evolved to cohabitation of various pH-neutral heterotrophic species, ultimately reverting back to background level. The pH was the dominant factor determining biogeochemical release of uranium in AMD. Acidophilic and uranium-tolerant bacteria, including Ferrovum, Leptospirillum, Acidiphilium, and Metallibacterium, were identified as playing key roles in this process through mechanisms such as enhancing acid production rate and facilitating organic matter biodegradation.
Collapse
Affiliation(s)
- Xinxiang Wei
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, Jiangxi, China
- Department of Hydraulic Engineering, Jiangxi Water Resource Institute, Nanchang, Jiangxi, China
| | - Hongliang Chen
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, Jiangxi, China
| | - Fangfang Zhu
- College of Nursing Health Sciences, Yunnan Open University, Kunming, Yunnan, China
| | - Jiang Li
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi, China
- Teachers’ College, East China University of Technology, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Hou S, Chen Z, Luo X, Zhang M, Yang P. Hydrogel immobilized bacteria@MOFs composite towards Bisphenol A degradation and the interconnection mechanism elucidation. ENVIRONMENTAL RESEARCH 2024; 251:118718. [PMID: 38490623 DOI: 10.1016/j.envres.2024.118718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Bisphenol A (BPA) degradation efficiency by bacteria or by metal-organic-frameworks (MOFs) catalyzed persulfate (PMS) oxidation have been studied intensively. However, their synergistic effect on BPA degradation was less reported. In this study, we combined previously synthesized CNT-hemin/Mn-MOF with an BPA degrading bacteria SQ-2 to form a composite (SQ-2@MOFs). CNT-hemin/Mn-MOF in the composite catalyzed little PMS to promote the degradation efficiency of SQ-2 on BPA. Results indicated SQ-2@MOFs significantly accelerated BPA degradation rate than SQ-2 alone. Furthermore, SQ-2@MOFs composite was successfully immobilized in hydrogel to achieve better degradation performance. Immobilized SQ-2@MOFs could almost completely degrade 1-20 mg/L BPA within 24 h and completely degrade 5 mg/L BPA at pH 4-8. Besides, degradation byproducts also reduced by immobilized SQ-2@MOFs, which promoted the cleaner biodegradation of BPA. Metabolomics and multiple chemical characterization results revealed the interconnection mechanism between CNT-hemin/Mn-MOFs, SQ-2 and hydrogel. CNT-hemin/Mn-MOF helped SQ-2 degrade BPA into more biodegradable products, promoted electron transfer, and augmented BPA degradation ability of SQ-2 itself. SQ-2 enabled the surface electronegativity of SQ-2@MOFs more suitable for BPA contact. Meanwhile, SQ-2 avoided the loss of Fe and Mn of CNT-hemin/Mn-MOF. Hydrogel augmented the above synergistic effect. This study provided new perspective for the development of biodegradation materials through interdisciplinary integration.
Collapse
Affiliation(s)
- Siyu Hou
- Chengdu Medical College, Chengdu, 610500, China; College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | | | | | - Ming Zhang
- China Railway Water Group CO. LTD, Xi'an, 710000, China
| | - Ping Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
8
|
Xiao W, Zhang Y, Chen X, Sha A, Xiong Z, Luo Y, Peng L, Zou L, Zhao C, Li Q. The Easily Overlooked Effect of Global Warming: Diffusion of Heavy Metals. TOXICS 2024; 12:400. [PMID: 38922080 PMCID: PMC11209588 DOI: 10.3390/toxics12060400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024]
Abstract
Since industrialization, global temperatures have continued to rise. Human activities have resulted in heavy metals being freed from their original, fixed locations. Because of global warming, glaciers are melting, carbon dioxide concentrations are increasing, weather patterns are shifting, and various environmental forces are at play, resulting in the movement of heavy metals and alteration of their forms. In this general context, the impact of heavy metals on ecosystems and organisms has changed accordingly. For most ecosystems, the levels of heavy metals are on the rise, and this rise can have a negative impact on the ecosystem as a whole. Numerous studies have been conducted to analyze the combined impacts of climate change and heavy metals. However, the summary of the current studies is not perfect. Therefore, this review discusses how heavy metals affect ecosystems during the process of climate change from multiple perspectives, providing some references for addressing the impact of climate warming on environmental heavy metals.
Collapse
Affiliation(s)
- Wenqi Xiao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Yunfeng Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Yingyong Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| |
Collapse
|
9
|
Xiao W, Zhang Y, Chen X, Sha A, Xiong Z, Luo Y, Peng L, Zou L, Zhao C, Li Q. The Diversity and Community Composition of Three Plants' Rhizosphere Fungi in Kaolin Mining Areas. J Fungi (Basel) 2024; 10:306. [PMID: 38786661 PMCID: PMC11121986 DOI: 10.3390/jof10050306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Mining activities in the kaolin mining area have led to the disruption of the ecological health of the mining area and nearby soils, but the effects on the fungal communities in the rhizosphere soils of the plants are not clear. Three common plants (Conyza bonariensis, Artemisia annua, and Dodonaea viscosa) in kaolin mining areas were selected and analyzed their rhizosphere soil fungal communities using ITS sequencing. The alpha diversity indices (Chao1, Shannon, Simpson, observed-species, pielou-e) of the fungal communities decreased to different extents in different plants compared to the non-kauri mining area. The β-diversity (PCoA, NMDS) analysis showed that the rhizosphere soil fungal communities of the three plants in the kaolin mine area were significantly differentiated from those of the control plants grown in the non-kaolin mine area, and the extent of this differentiation varied among the plants. The analysis of fungal community composition showed that the dominant fungi in the rhizosphere fungi of C. bonariensis and A. annua changed, with an increase in the proportion of Mycosphaerella (genus) by about 20% in C. bonariensis and A. annua. An increase in the proportion of Didymella (genus) by 40% in D. viscosa was observed. At the same time, three plant rhizosphere soils were affected by kaolin mining activities with the appearance of new fungal genera Ochrocladosporium and Plenodomus. Predictive functional potential analysis of the samples revealed that a significant decrease in the potential of functions such as biosynthesis and glycolysis occurred in the rhizosphere fungal communities of kaolin-mined plants compared to non-kaolin-mined areas. The results show that heavy metals and plant species are the key factors influencing these changes, which suggests that selecting plants that can bring more abundant fungi can adapt to heavy metal contamination to restore soil ecology in the kaolin mining area.
Collapse
Affiliation(s)
- Wenqi Xiao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Yunfeng Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Yingyong Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| |
Collapse
|
10
|
Qiu L, Sha A, Li N, Ran Y, Xiang P, Zhou L, Zhang T, Wu Q, Zou L, Chen Z, Li Q, Zhao C. The characteristics of fungal responses to uranium mining activities and analysis of their tolerance to uranium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116362. [PMID: 38657459 DOI: 10.1016/j.ecoenv.2024.116362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
The influence of uranium (U) mining on the fungal diversity (FD) and communities (FC) structure was investigated in this work. Our results revealed that soil FC richness and FD indicators obviously decreased due to U, such as Chao1, observed OTUs and Shannon index (P<0.05). Moreover, the abundances of Mortierella, Gibberella, and Tetracladium were notably reduced in soil samples owing to U mining activities (P<0.05). In contrast, the abundances of Cadophora, Pseudogymnoascus, Mucor, and Sporormiella increased in all soil samples after U mining (P<0.05). Furthermore, U mining not only dramatically influenced the Plant_Pathogen guild and Saprotroph and Pathotroph modes (P<0.05), but also induced the differentiation of soil FC and the enrichment of the Animal_Pathogen-Soil_Saprotroph and Endophyte guilds and Symbiotroph and Pathotroph Saprotroph trophic modes. In addition, various fungal populations and guilds were enriched to deal with the external stresses caused by U mining in different U mining areas and soil depths (P<0.05). Finally, nine U-tolerant fungi were isolated and identified with a minimum inhibitory concentration range of 400-600 mg/L, and their adsorption efficiency for U ranged from 11.6% to 37.9%. This study provides insights into the impact of U mining on soil fungal stability and the response of fungi to U mining activities, as well as aids in the screening of fungal strains that can be used to promote remediation of U mining sites on plateaus.
Collapse
Affiliation(s)
- Lu Qiu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Na Li
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yanqiong Ran
- Sichuan Ecological and Environmental Monitoring Center, Chengdu, Sichuan, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lin Zhou
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Zhaoqiong Chen
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
| |
Collapse
|
11
|
Xiong Z, Zhang Y, Chen X, Sha A, Xiao W, Luo Y, Peng L, Zou L, Li Q. Impact of Vanadium-Titanium-Magnetite Mining Activities on Endophytic Bacterial Communities and Functions in the Root Systems of Local Plants. Genes (Basel) 2024; 15:526. [PMID: 38790155 PMCID: PMC11121153 DOI: 10.3390/genes15050526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
This study utilized 16S rRNA high-throughput sequencing technology to analyze the community structure and function of endophytic bacteria within the roots of three plant species in the vanadium-titanium-magnetite (VTM) mining area. The findings indicated that mining activities of VTM led to a notable decrease in both the biodiversity and abundance of endophytic bacteria within the root systems of Eleusine indica and Carex (p < 0.05). Significant reductions were observed in the populations of Nocardioides, concurrently with substantial increments in the populations of Pseudomonas (p < 0.05), indicating that Pseudomonas has a strong adaptability to this environmental stress. In addition, β diversity analysis revealed divergence in the endophytic bacterial communities within the roots of E. indica and Carex from the VTM mining area, which had diverged to adapt to the environmental stress caused by mining activity. Functional enrichment analysis revealed that VTM mining led to an increase in polymyxin resistance, nicotinate degradation I, and glucose degradation (oxidative) (p < 0.05). Interestingly, we found that VTM mining did not notably alter the endophytic bacterial communities or functions in the root systems of Dodonaea viscosa, indicating that this plant can adapt well to environmental stress. This study represents the primary investigation into the influence of VTM mining activities on endophytic bacterial communities and the functions of nearby plant roots, providing further insight into the impact of VTM mining activities on the ecological environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Z.X.); (Y.Z.); (X.C.); (A.S.); (W.X.); (Y.L.); (L.P.); (L.Z.)
| |
Collapse
|
12
|
Belykh E, Maystrenko T, Velegzhaninov I, Tavleeva M, Rasova E, Rybak A. Taxonomic Diversity and Functional Traits of Soil Bacterial Communities under Radioactive Contamination: A Review. Microorganisms 2024; 12:733. [PMID: 38674676 PMCID: PMC11051952 DOI: 10.3390/microorganisms12040733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Studies investigating the taxonomic diversity and structure of soil bacteria in areas with enhanced radioactive backgrounds have been ongoing for three decades. An analysis of data published from 1996 to 2024 reveals changes in the taxonomic structure of radioactively contaminated soils compared to the reference, showing that these changes are not exclusively dependent on contamination rates or pollutant compositions. High levels of radioactive exposure from external irradiation and a high radionuclide content lead to a decrease in the alpha diversity of soil bacterial communities, both in laboratory settings and environmental conditions. The effects of low or moderate exposure are not consistently pronounced or unidirectional. Functional differences among taxonomic groups that dominate in contaminated soil indicate a variety of adaptation strategies. Bacteria identified as multiple-stress tolerant; exhibiting tolerance to metals and antibiotics; producing antioxidant enzymes, low-molecular antioxidants, and radioprotectors; participating in redox reactions; and possessing thermophilic characteristics play a significant role. Changes in the taxonomic and functional structure, resulting from increased soil radionuclide content, are influenced by the combined effects of ionizing radiation, the chemical toxicity of radionuclides and co-contaminants, as well as the physical and chemical properties of the soil and the initial bacterial community composition. Currently, the quantification of the differential contributions of these factors based on the existing published studies presents a challenge.
Collapse
Affiliation(s)
- Elena Belykh
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Tatiana Maystrenko
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Ilya Velegzhaninov
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Marina Tavleeva
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
- Department of Biology, Institute of Natural Sciences, Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prospekt, Syktyvkar 167001, Russia
| | - Elena Rasova
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Anna Rybak
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| |
Collapse
|
13
|
Li L, Cao X, Huang J, Zhang T, Wu Q, Xiang P, Shen C, Zou L, Li J, Li Q. Effect of Pleurotus eryngii mycelial fermentation on the composition and antioxidant properties of tartary buckwheat. Heliyon 2024; 10:e25980. [PMID: 38404826 PMCID: PMC10884446 DOI: 10.1016/j.heliyon.2024.e25980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/14/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
In this study, we investigated the effect of solid-state fermentation of Pleurotus eryngii on the composition and antioxidant activity of Tartary buckwheat (TB). Firstly, the solid-state fermentation of P. eryngii mycelium with buckwheat was carried out, and the fermentation process was explored. The results of the extraction process and method selection experiments showed that the percolation extraction method was superior to the other two methods. The results of extraction rate, active components and antioxidant activity measurements before and after fermentation of TB extract showed that the extraction rate increased about 1.7 times after fermentation. Total flavonoids, rutin and triterpene contents were increased after fermentation compared to control. Meanwhile, LC-MS results showed an increase in the content of the most important substances in the fermented TB extract and the incorporation of new components, such as oleanolic acid, ursolic acid, amino acids, and D-chiral inositol. The fermented TB extract showed stronger antioxidant activity, while the protein and amino acid contents increased by 1.93-fold and 1.94-fold, respectively. This research was the first to use P. eryngii to ferment TB and prepared a lyophilized powder that could be used directly using vacuum freeze-drying technology. Not only the use of solid-state fermentation technology advantages of edible fungi to achieve value-added buckwheat, but also to broaden the scope of TB applications. This study will provide ideas and directions for the development and application of edible mushroom fermentation technology and TB.
Collapse
Affiliation(s)
- Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Xiaonian Cao
- Luzhou Laojiao Co. Ltd., Luzhou, 646000, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, China
| | - Jingwei Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Caihong Shen
- Luzhou Laojiao Co. Ltd., Luzhou, 646000, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou, 646000, China
| |
Collapse
|
14
|
Li Q, Hu H, Tan X, Wang J, Mei R, Jiang F, Ling Y, Li X. Effects of Storage in an Active and Spontaneous Controlled O 2/CO 2 Atmosphere on Volatile Flavor Components and the Microbiome of Truffles. ACS OMEGA 2024; 9:9331-9347. [PMID: 38434872 PMCID: PMC10905597 DOI: 10.1021/acsomega.3c08375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 03/05/2024]
Abstract
This study explored the potential to improve the storage quality and prolong the shelf life of truffles by storing them in a modified atmosphere fresh-keeping box with sealed gas components of Active Modified Atmosphere Packaging (AMAP, 40% O2 + 60% CO2) at 4 °C. During the storage period, a total of 63 volatile components in 10 categories were detected, with aldehydes being the most abundant and the relative content of ethers being the highest. The relative odor activity value and principal component analysis revealed that isovaleraldehyde, 1-octen-3-ol, 1-octen-3-one, and dimethyl sulfide were the characteristic flavor components of fresh truffles. However, 3-methylthiopropionaldehyde and (E, E)-2,4-nonadienal were the components that caused the deterioration of truffle flavor and could potentially serve as markers of truffle decay characteristics. 16S rDNA high-throughput sequencing showed that Leuconostoc and Lactococcus were dominant in the truffle samples stored for 14 days, but the abundance of putrefactive pathogenic bacteria showed an increasing trend in the truffle samples stored for 28 days. During the whole storage period, the common fungi detected in the different treatment groups were Candida and Aspergillus. The relative abundance of the former decreased, while the relative abundance of the latter decreased initially and then increased. The correlation between volatile components and the microbial flora was further analyzed, which indicated that Lactococcus and Lactobacillus had the same contributions to the same flavor, while Pseudomonas and Glutamicibacter had the opposite contributions to the same flavor. The results provide a reference for the storage and preservation of truffles.
Collapse
Affiliation(s)
- Qiang Li
- School of Food and Biological
Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Haiyang Hu
- School of Food and Biological
Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Xingyi Tan
- School of Food and Biological
Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Jianhui Wang
- School of Food and Biological
Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Ruhuai Mei
- School of Food and Biological
Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Fangguo Jiang
- School of Food and Biological
Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Yunkun Ling
- School of Food and Biological
Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Xiang Li
- School of Food and Biological
Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| |
Collapse
|