1
|
Song YJ, Gallenkamp C, Lleopart G, Krewald V, Valentí R. Influence of graphene on the electronic and magnetic properties of an iron(III) porphyrin chloride complex. Phys Chem Chem Phys 2024; 26:26370-26376. [PMID: 39387114 DOI: 10.1039/d4cp01551g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Although iron-based single atom catalysts are regarded as a promising alternative to precious metal catalysts, their precise electronic structures during catalysis still pose challenges for computational descriptions. A particularly urgent issue to be addressed is the influence of the environment on the electronic structure, and how to describe this accurately using computational methods. Here, we study an iron porphyrin chloride complex adsorbed on a graphene sheet using density functional theory calculations to probe how much the electronic structure is influenced by the presence of a graphene layer. Our results indicate that weak interactions due to van der Waals forces dominate between the porphyrin complex and graphene, and only a small amount of charge is transferred between the two entities. Furthermore, the interplay of the ligand field environment, strong p-d hybridization, and correlation effects within the complex are strongly involved in determining the spin state of the iron ion. By bridging molecular chemistry and solid state physics, this study provides first steps towards a joint analysis of the properties of iron-based catalysts from first principles.
Collapse
Affiliation(s)
- Young-Joon Song
- Institut für Theoretische Physik, Goethe-Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany.
| | - Charlotte Gallenkamp
- Quantum Chemistry, Department of Chemistry, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany.
| | - Genís Lleopart
- Departament de Ciéncia de Materials i Química Física and Institut de Química Teórica i Computacional (IQTC), Universitat de Barcelona, c/Martí i Franqués 1-11, 08028 Barcelona, Spain
| | - Vera Krewald
- Quantum Chemistry, Department of Chemistry, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany.
| | - Roser Valentí
- Institut für Theoretische Physik, Goethe-Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Pérez AL, Kemmerer A, Zapata AJ, Sartoris R, Gonzalez PJ, Urteaga R, Baggio R, Suarez S, Ramos CA, Dalosto SD, Rizzi AC, Brondino CD. Synthesis, structure, and characterisation of a ferromagnetically coupled dinuclear complex containing Co(II) ions in a high spin configuration and thiodiacetate and phenanthroline as ligands and of a series of isomorphous heterodinuclear complexes containing different Co : Zn ratios. Dalton Trans 2023; 52:14595-14605. [PMID: 37786344 DOI: 10.1039/d3dt02115g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
We report the synthesis, crystal structure, and characterisation of a dinuclear Co(II) compound with thiodiacetate (tda) and phenanthroline (phen) as ligands (1), and of a series of metal complexes isomorphous to 1 with different Co : Zn ratios (2, 4 : 1; 3, 1 : 1; 4, 1 : 4; 5, 1 : 10). General characterisation methodologies and X-ray data showed that all the synthesised complexes are isomorphous to Zn(II) and Cu(II) analogues (CSD codes: DUHXEL and BEBQII). 1 consists of centrosymmetric Co(II) ion dimers in which the ions are 3.214 Å apart, linked by two μ-O bridges. Each cobalt atom is in a distorted octahedral environment of the N2O3S type. UV-vis spectra of 1 and 5 are in line with high spin (S = 3/2) Co(II) ions in octahedral coordination and indicate that the electronic structure of both Co(II) ions in the dinuclear unit does not significantly change relative to that of the magnetically isolated Co(II) ion. EPR spectra of powder samples of 5 (Co : Zn ratio of 1 : 10) together with spectral simulation indicated high spin Co(II) ions with high rhombic distortion of the zfs [E/D = 0.31(1), D > 0]. DC magnetic susceptibility experiments on 1 and analysis of the data constraining the E/D value obtained by EPR yielded g = 2.595(7), |D| = 61(1) cm-1, and an intradimer ferromagnetic exchange coupling of J = 1.39(4) cm-1. EPR spectra as a function of Co : Zn ratio for both powder and single crystal samples confirmed that they result from two effective S' = 1/2 spins that interact through dipolar and isotropic exchange interactions to yield magnetically isolated S' = 1 centres and that interdimeric exchange interactions, putatively mediated by hydrophobic interactions between phen moieties, are negligible. The latter observation contrasts with that observed in the Cu(II) analogue, where a transition from S = 1 to S' = 1/2 was observed. Computational calculations indicated that the absence of the interdimeric exchange interaction in 1 is due to a lower Co(II) ion spin density delocalisation towards the metal ligands.
Collapse
Affiliation(s)
- Ana L Pérez
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, Ciudad Universitaria, S3000ZAA Santa Fe, Argentina.
- Instituto de Física del Litoral, Universidad Nacional del Litoral - CONICET, Güemes 3450, 3000 Santa Fe, Argentina
| | - Axel Kemmerer
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, Ciudad Universitaria, S3000ZAA Santa Fe, Argentina.
| | - Alejandro J Zapata
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, Ciudad Universitaria, S3000ZAA Santa Fe, Argentina.
| | - Rosana Sartoris
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, Ciudad Universitaria, S3000ZAA Santa Fe, Argentina.
| | - Pablo J Gonzalez
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, Ciudad Universitaria, S3000ZAA Santa Fe, Argentina.
| | - Raul Urteaga
- Instituto de Física del Litoral, Universidad Nacional del Litoral - CONICET, Güemes 3450, 3000 Santa Fe, Argentina
- Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, 3000 Santa Fe, Argentina
| | - Ricardo Baggio
- Gerencia de Investigación y Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | - Sebastián Suarez
- Gerencia de Investigación y Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | - Carlos A Ramos
- Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, Centro Atómico Bariloche, 8400, San Carlos de Bariloche, Río Negro, Argentina
| | - Sergio D Dalosto
- Instituto de Física del Litoral, Universidad Nacional del Litoral - CONICET, Güemes 3450, 3000 Santa Fe, Argentina
- Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, 3000 Santa Fe, Argentina
| | - Alberto C Rizzi
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, Ciudad Universitaria, S3000ZAA Santa Fe, Argentina.
| | - Carlos D Brondino
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, Ciudad Universitaria, S3000ZAA Santa Fe, Argentina.
| |
Collapse
|
3
|
Moschkowitsch W, Samanta B, Zion N, Honig HC, Cullen DA, Caspary Toroker M, Elbaz L. NiFe-mixed metal porphyrin aerogels as oxygen evolution reaction catalysts in alkaline electrolysers. NANOSCALE 2022; 14:18033-18040. [PMID: 36445268 DOI: 10.1039/d2nr05675e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aerogels are a very interesting group of materials owing to their unique physical and chemical properties. In the context of electrocatalysis, the focus has been on their physical properties, and they have been used primarily as catalyst supports so far. In this work, we synthesized porphyrin aerogels containing Ni and NiFe mixed metal materials and studied them as catalysts for the oxygen evolution reaction (OER). Different Ni : Fe ratios were synthesized and studied in electrochemical cells, and DFT calculations were conducted in order to gain insight into their behavior. The activity trends were dependent on the metal ratios and differ from known NiFeOOH materials due to the change in the oxidation states of the metals to higher numbers. Herein, we show that Ni and Fe have a synergistic effect on the OER, despite being structurally separated. They are connected electronically, though, through a large organic aromatic system that facilitates electron sharing between them. Among the mixed metal porphyrin aerogels, the best ratio was found to be Ni : Fe = 35 : 65, in contrast to oxide/oxyhydroxide materials in which a ratio of 80 : 20 was found to be ideal.
Collapse
Affiliation(s)
- Wenjamin Moschkowitsch
- Chemistry Department, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Bipasa Samanta
- Department of Materials Science and Engineering and The Nancy and Stephen Grand Technion Energy Program, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Noam Zion
- Chemistry Department, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Hilah C Honig
- Chemistry Department, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - David A Cullen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Maytal Caspary Toroker
- Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Lior Elbaz
- Chemistry Department, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
4
|
Sun Q, Mateo LM, Robles R, Ruffieux P, Bottari G, Torres T, Fasel R, Lorente N. Magnetic Interplay between π-Electrons of Open-Shell Porphyrins and d-Electrons of Their Central Transition Metal Ions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105906. [PMID: 35302718 PMCID: PMC9259720 DOI: 10.1002/advs.202105906] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Magnetism is typically associated with d- or f-block elements, but can also appear in organic molecules with unpaired π-electrons. This has considerably boosted the interest in such organic materials with large potential for spintronics and quantum applications. While several materials showing either d/f or π-electron magnetism have been synthesized, the combination of both features within the same structure has only scarcely been reported. Open-shell porphyrins (Pors) incorporating d-block transition metal ions represent an ideal platform for the realization of such architectures. Herein, the preparation of a series of open-shell, π-extended Pors that contain magnetically active metal ions (i.e., CuII , CoII , and FeII ) through a combination of in-solution and on-surface synthesis is reported. A detailed study of the magnetic interplay between π- and d-electrons in these metalloPors has been performed by scanning probe methods and density functional theory calculations. For the Cu and FePors, ferromagnetically coupled π-electrons are determined to be delocalized over the Por edges. For the CoPor, the authors find a Kondo resonance resulting from the singly occupied CoII dz 2 orbital to dominate the magnetic fingerprint. The Fe derivative exhibits the highest magnetization of 3.67 μB (S≈2) and an exchange coupling of 16 meV between the π-electrons and the Fe d-states.
Collapse
Affiliation(s)
- Qiang Sun
- nanotech@surfaces LaboratoryEmpa ‐ Swiss Federal Laboratories for Materials Science and TechnologyDübendorf8600Switzerland
- Materials Genome InstituteShanghai UniversityShanghai200444China
| | - Luis M. Mateo
- Departamento de Química OrgánicaUniversidad Autónoma de MadridMadrid28049Spain
- IMDEA‐NanocienciaCampus de CantoblancoMadrid28049Spain
| | - Roberto Robles
- Centro de Física de Materiales CFM/MPC (CSIC‐UPV/EHU)Paseo de Manuel de Lardizabal 5Donostia‐San Sebastián20018Spain
| | - Pascal Ruffieux
- nanotech@surfaces LaboratoryEmpa ‐ Swiss Federal Laboratories for Materials Science and TechnologyDübendorf8600Switzerland
| | - Giovanni Bottari
- Departamento de Química OrgánicaUniversidad Autónoma de MadridMadrid28049Spain
- IMDEA‐NanocienciaCampus de CantoblancoMadrid28049Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de MadridMadrid28049Spain
| | - Tomás Torres
- Departamento de Química OrgánicaUniversidad Autónoma de MadridMadrid28049Spain
- IMDEA‐NanocienciaCampus de CantoblancoMadrid28049Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de MadridMadrid28049Spain
| | - Roman Fasel
- nanotech@surfaces LaboratoryEmpa ‐ Swiss Federal Laboratories for Materials Science and TechnologyDübendorf8600Switzerland
- Department of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernBern3012Switzerland
| | - Nicolás Lorente
- Centro de Física de Materiales CFM/MPC (CSIC‐UPV/EHU)Paseo de Manuel de Lardizabal 5Donostia‐San Sebastián20018Spain
- Donostia International Physics Center (DIPC)Donostia‐San Sebastián20018Spain
| |
Collapse
|
5
|
Tang X, Shang J, Ma Y, Gu Y, Chen C, Kou L. Tuning Magnetism of Metal Porphyrazine Molecules by a Ferroelectric In 2Se 3 Monolayer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39561-39566. [PMID: 32805892 DOI: 10.1021/acsami.0c09247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electric field tuning of magnetism is highly desirable for nanoelectronics, but volatility in electron spin manipulation presents a major challenge that needs urgent resolution. Here, we show by first-principles calculations that magnetism of metal porphyrazine (MPz) molecules can be effectively tuned by switching ferroelectric polarization of an adjacent In2Se3 monolayer. The magnetic moments of TiPz and VPz (MnPz, FePz, and CoPz) decrease (increase) at one polarization but remain unchanged at reversed polarization. This intriguing phenomenon stems from distinct metal d-orbital occupation caused by electron transfer and energy-level shift associated with the polarization switch of the In2Se3 monolayer. Moreover, the ferroelectric switch also tunes the underlying electronic properties, producing a metallic, half-metallic, or semiconducting state depending on polarization. These findings of robust ferroelectric tuning of magnetism and related electronic properties in MPz-adsorbed In2Se3 hold great promise for innovative design and implementation in advanced magnetic memory storage, sensor, and spintronic devices.
Collapse
Affiliation(s)
- Xiao Tang
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Jing Shang
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Yandong Ma
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yuantong Gu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Changfeng Chen
- Department of Physics and Astronomy, University of Nevada, Las Vegas, Nevada 89154, United States
| | - Liangzhi Kou
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
6
|
Arruda LM, Ali ME, Bernien M, Hatter N, Nickel F, Kipgen L, Hermanns CF, Bißwanger T, Loche P, Heinrich BW, Franke KJ, Oppeneer PM, Kuch W. Surface-orientation- and ligand-dependent quenching of the spin magnetic moment of Co porphyrins adsorbed on Cu substrates. Phys Chem Chem Phys 2020; 22:12688-12696. [PMID: 32458937 DOI: 10.1039/d0cp00854k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Porphyrin molecules are particularly interesting candidates for spintronic applications due to their bonding flexibility, which allows to modify their properties substantially by the addition or transformation of ligands. Here, we investigate the electronic and magnetic properties of cobalt octaethylporphyrin (CoOEP), deposited on copper substrates with two distinct crystallographic surface orientations, Cu(100) and Cu(111), with X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD). A significant magnetic moment is present in the Co ions of the molecules deposited on Cu(100), but it is completely quenched on Cu(111). Heating the molecules on both substrates to 500 K induces a ring-closure reaction with cobalt tetrabenzoporphyrin (CoTBP) as reaction product. In these molecules, the magnetic moment is quenched on both surfaces. Our XMCD and XAS measurements suggest that the filling of the dz2 orbital leads to a non-integer valence state and causes the quench of the spin moments on all samples except CoOEP/Cu(100), where the molecular conformation induces variations to the ligand field that lift the quench. We further employ density functional theory calculations, supplemented with on-site Coulomb correlations (DFT+U), to study the adsorption of these spin-bearing molecules on the Cu substrates. Our calculations show that charge transfer from the Cu substrates as well as charge redistribution within the Co 3d orbitals lead to the filling of the Co minority spin dz2 orbital, causing a 'turning off' of the exchange splitting and quenching of the spin moment at the Co magnetic centers. Our investigations suggest that, by this mechanism, molecule-substrate interactions can be used to control the quenching of the magnetic moments of the adsorbed molecules.
Collapse
Affiliation(s)
- Lucas M Arruda
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
We introduce a computational approach to study porphyrin-like transition metal complexes, bridging density functional theory and exact many-body techniques, such as the density matrix renormalization group (DMRG). We first derive a multi-orbital Anderson impurity Hamiltonian starting from first principles considerations that qualitatively reproduce generalized gradient approximation (GGA)+U results when ignoring inter-orbital Coulomb repulsion U ′ and Hund exchange J. An exact canonical transformation is used to reduce the dimensionality of the problem and make it amenable to DMRG calculations, including all many-body terms (both intra- and inter-orbital), which are treated in a numerically exact way. We apply this technique to FeN 4 centers in graphene and show that the inclusion of these terms has dramatic effects: as the iron orbitals become single occupied due to the Coulomb repulsion, the inter-orbital interaction further reduces the occupation, yielding a non-monotonic behavior of the magnetic moment as a function of the interactions, with maximum polarization only in a small window at intermediate values of the parameters. Furthermore, U ′ changes the relative position of the peaks in the density of states, particularly on the iron d z 2 orbital, which is expected to affect the binding of ligands greatly.
Collapse
|
8
|
Chen HQ, Shan H, Zhao AD, Li B. First-Principles study of two dimensional transition metal phthalocyanine-based metal-organic frameworks in kagome lattice. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1810227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Hao-qi Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Huan Shan
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Ai-di Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Bin Li
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Chang MH, Kim NY, Chang YH, Lee Y, Jeon US, Kim H, Kim YH, Kahng SJ. O 2, NO 2 and NH 3 coordination to Co-porphyrin studied with scanning tunneling microscopy on Au(111). NANOSCALE 2019; 11:8510-8517. [PMID: 30990501 DOI: 10.1039/c9nr00843h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The coordination structure between small molecules and metalloporphyrins plays a crucial role in functional reactions such as bio-oxidation and catalytic activation. Their vertical, tilting, and dynamic structures have been actively studied with diffraction and resonance spectroscopy for the past four decades. Contrastingly, real-space visualization beyond simple protrusion and depression is relatively rare. In this paper, high-resolution scanning tunnelling microscopy (STM) images are presented of di-, tri-, and tetra-atomic small molecules (O2, NO2, and NH3, respectively) coordinated to Co-porphyrin on Au(111). A square ring structure was observed for O2, a rectangular ring structure for NO2, and a bright-center structure for NH3 at 80 K. The symmetries of experimental STM images were reproduced in density functional theory (DFT) calculations, considering the precession motion of the small molecules. Thus, this study shows that the structure of small molecules coordinated to metalloporphyrins can be visualized using high-resolution STM and DFT calculations.
Collapse
Affiliation(s)
- Min Hui Chang
- Department of Physics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Bennett JA, Miller DP, Simpson SM, Rodriguez M, Zurek E. Electrochemical Atomic Force Microscopy and First-Principles Calculations of Ferriprotoporphyrin Adsorption and Polymerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11335-11346. [PMID: 30157638 DOI: 10.1021/acs.langmuir.8b02059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The adsorption and subsequent electrooxidative polymerization of ferriprotoporphyrin IX chloride (hemin; FePPCl) was investigated on highly ordered pyrolytic graphite, glassy carbon, and polycrystalline Pt electrodes using electrochemical atomic force microscopy, first-principles calculations, and cyclic voltammetry. Hemin was shown to readily adsorb to all three surfaces; however, it was more continuous over the carbon surfaces compared to the Pt surface. This disparity in adsorption appears to be a major contributing factor to differences observed between the electrodes following hemin electropolymerization. Despite differences in roughness and morphology, hemin polymerized as a continuous layer over each electrode surface. Periodic density functional theory calculations were used to model FePP (without Cl) on both the Pt(111) and graphite surfaces using the vdW-DF-optPBE functional to account for the dispersion interactions. Our calculations suggest that the FePP molecule chemisorbs to the Pt surface while at the same time exhibiting intramolecular hydrogen bonding between the carboxylic acid groups, which are extended away from the surface. In contrast to FePP-Pt chemisorption, FePP was found to physisorb to graphite. The preferred spin state upon adsorption was found to be S = 2 on Pt(111), whereas on graphite, the high and intermediate spin states were nearly isoenergetic. Additionally, gas-phase calculations suggest that much of the surface roughness observed microscopically for the polymerized porphyrin layer may originate from the nonparallel stacking of porphyrin molecules, which interact with each other by forming four intermolecular hydrogen bonds and through dispersion interactions between the stacked porphyrin rings. Regardless of polymer thickness, the underlying electrode appears to be able to participate in at least some redox processes. This was observed for the hemin-polymerized Pt electrode using the 2H+/H2 redox couple and was suspected to be due to some Pt surface atoms not being specifically coordinated to the hemin molecules and therefore available to react with H+ that was small enough to diffuse through the polymer layer.
Collapse
Affiliation(s)
- Jason A Bennett
- School of Science , Penn State Behrend , 4205 College Drive , Erie , Pennsylvania 16563 , United States
| | - Daniel P Miller
- Department of Chemistry , State University of New York at Buffalo , Buffalo , New York 14260 , United States
| | - Scott M Simpson
- Department of Chemistry , St. Bonaventure University , St. Bonaventure , New York 14778 , United States
| | - Marcela Rodriguez
- School of Science , Penn State Behrend , 4205 College Drive , Erie , Pennsylvania 16563 , United States
| | - Eva Zurek
- Department of Chemistry , State University of New York at Buffalo , Buffalo , New York 14260 , United States
| |
Collapse
|
11
|
Zhao XX, Chen HQ, Li B. First-Principles Study on Magnetism of Manganese Dithiolene-diamine and Dihydroxyl-diamine Nanosheets. CHINESE J CHEM PHYS 2017. [DOI: 10.1063/1674-0068/30/cjcp1705085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xiao-xia Zhao
- Department of Physics, University of Science and Technology of China, Hefei 230026, China
| | - Hao-qi Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Bin Li
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
12
|
Kuang G, Zhang Q, Lin T, Pang R, Shi X, Xu H, Lin N. Mechanically-Controlled Reversible Spin Crossover of Single Fe-Porphyrin Molecules. ACS NANO 2017; 11:6295-6300. [PMID: 28498652 DOI: 10.1021/acsnano.7b02567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Spin-crossover (SCO) molecules are thought to be ideal systems for molecular spintronics when SCO can be precisely controlled at the single-molecule level. This is demonstrated here in the single-molecule junctions of Fe-porphyrin formed in a scanning tunneling microscope. Experimentally, we find that the junctions feature a zero-bias resonance in molecular conductance associated with the Fe spin center. When mechanically stretching or squeezing the junctions by adjusting the tip height, the line shape of the zero-bias resonance varies reversibly. First-principles calculations reveal that widening the junction gap by 2 Å transforms the macrocyclic core hosting the Fe center from a saddle to a planar conformation. This conformational change shortens the Fe-N bonds by 3%, which changes the Fe spin state from S = 2 to S = 1.
Collapse
Affiliation(s)
- Guowen Kuang
- Department of Physics, The Hong Kong University of Science and Technology , Hong Kong, China
| | - Qiushi Zhang
- Department of Physics, The Hong Kong University of Science and Technology , Hong Kong, China
| | - Tao Lin
- Department of Physics, The Hong Kong University of Science and Technology , Hong Kong, China
| | - Rui Pang
- Department of Physics, Southern University of Science and Technology of China , Nanshan District, Shenzhen, Guangdong 518055, China
| | - Xingqiang Shi
- Department of Physics, Southern University of Science and Technology of China , Nanshan District, Shenzhen, Guangdong 518055, China
| | - Hu Xu
- Department of Physics, Southern University of Science and Technology of China , Nanshan District, Shenzhen, Guangdong 518055, China
| | - Nian Lin
- Department of Physics, The Hong Kong University of Science and Technology , Hong Kong, China
| |
Collapse
|
13
|
Choudhuri I, Kumar S, Mahata A, Rawat KS, Pathak B. Transition-metal embedded carbon nitride monolayers: high-temperature ferromagnetism and half-metallicity. NANOSCALE 2016; 8:14117-14126. [PMID: 27321785 DOI: 10.1039/c6nr03282f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
High-temperature ferromagnetic materials with planar surfaces are promising candidates for spintronics applications. Using state-of-the-art density functional theory (DFT) calculations, transition metal (TM = Cr, Mn, and Fe) incorporated graphitic carbon nitride (TM@gt-C3N4) systems are investigated as possible spintronics devices. Interestingly, ferromagnetism and half-metallicity were observed in all of the TM@gt-C3N4 systems. We find that Cr@gt-C3N4 is a nearly half-metallic ferromagnetic material with a Curie temperature of ∼450 K. The calculated Curie temperature is noticeably higher than other planar 2D materials studied to date. Furthermore, it has a steel-like mechanical stability and also possesses remarkable dynamic and thermal (500 K) stability. The calculated magnetic anisotropy energy (MAE) in Cr@gt-C3N4 is as high as 137.26 μeV per Cr. Thereby, such material with a high Curie temperature can be operated at high temperatures for spintronics devices.
Collapse
Affiliation(s)
- Indrani Choudhuri
- Discipline of Chemistry, School of Basic Sciences, Indian Institute of Technology (IIT) Indore, Indore, M.P. 452020, India
| | | | | | | | | |
Collapse
|
14
|
Kolesov G, Grånäs O, Hoyt R, Vinichenko D, Kaxiras E. Real-Time TD-DFT with Classical Ion Dynamics: Methodology and Applications. J Chem Theory Comput 2015; 12:466-76. [DOI: 10.1021/acs.jctc.5b00969] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Grigory Kolesov
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Oscar Grånäs
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department
of Physics and Astronomy, Division of Materials Theory, Uppsala University, Box
516, SE-75120 Uppsala, Sweden
| | - Robert Hoyt
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Dmitry Vinichenko
- Department
of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Efthimios Kaxiras
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
15
|
Novoselov DY, Korotin DM, Anisimov VI. Features of the electronic structure of the active center of an HbS molecule. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2015. [DOI: 10.1134/s0036024416010209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Ali ME, Oppeneer PM. Unraveling the Electronic Structure, Spin States, Optical and Vibrational Spectra of Malaria Pigment. Chemistry 2015; 21:8544-53. [DOI: 10.1002/chem.201406208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Indexed: 12/19/2022]
|
17
|
Liu J, Sun Q. Enhanced Ferromagnetism in a Mn3
C12
N12
H12
Sheet. Chemphyschem 2014; 16:614-20. [DOI: 10.1002/cphc.201402713] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/12/2014] [Indexed: 11/09/2022]
|
18
|
Zhou J, Sun Q. Carrier induced magnetic coupling transitions in phthalocyanine-based organometallic sheet. NANOSCALE 2014; 6:328-33. [PMID: 24196793 DOI: 10.1039/c3nr04041k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A two-dimensional sheet with long range ferromagnetic (FM) order has been hotly pursued currently. The recent success in synthesizing polymerized Fe-phthalocyanine (poly-FePc) porous sheets paves a possible way to achieve this goal. However, the poly-FePc and its analog poly-CrPc structure are intrinsically antiferromagnetic (AFM). Using first principles combined with Monte-Carlo simulations, we study systematically the carrier-induced magnetic coupling transitions in poly-CrPc and poly-FePc sheets. We show that electron doping can induce stable FM states with Curie temperatures of 130-140 K, while hole doping will enhance the stability of the AFM states. Such changes in magnetic couplings depend on the balance of AFM superexchange and FM p-d exchange.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Materials Science and Engineering, Peking University, Beijing 100871, China.
| | | |
Collapse
|
19
|
Defect controlled magnetism in FeP/graphene/Ni(111). Sci Rep 2013; 3:3405. [PMID: 24296980 PMCID: PMC3847699 DOI: 10.1038/srep03405] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/08/2013] [Indexed: 11/08/2022] Open
Abstract
Spin switching of organometallic complexes by ferromagnetic surfaces is an important topic in the area of molecular nanospintronics. Moreover, graphene has been shown as a 2D surface for physisorption of molecular magnets and strain engineering on graphene can tune the spin state of an iron porphyrin (FeP) molecule from S = 1 to S = 2. Our ab initio density functional calculations suggest that a pristine graphene layer placed between a Ni(111) surface and FeP yields an extremely weak exchange interaction between FeP and Ni whereas the introduction of defects in graphene shows a variety of ferromagnetic and antiferromagnetic exchange interactions. Moreover, these defects control the easy axes of magnetization, strengths of magnetic anisotropy energies and spin-dipolar contributions. Our study suggests a new way of manipulating molecular magnetism by defects in graphene and hence has the potential to be explored in designing spin qubits to realize logic operations in molecular nanospintronics.
Collapse
|
20
|
Ferradás R, García-Suárez VM, Ferrer J. Symmetry-induced quantum interference effects in metalloporphyrin wires. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:325501. [PMID: 23838608 DOI: 10.1088/0953-8984/25/32/325501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We calculate the electronic and transport properties of a series of metalloporphyrin molecules sandwiched between gold electrodes using a combination of density functional theory and scattering theory. The impact of strong correlations at the central metallic atom is gauged by comparing our results obtained using conventional DFT and DFT + U approaches. The zero- and finite-bias transport properties may or may not show spin-filtering behavior, depending on the nature of the d state closest to the Fermi energy. The type of d state depends on the metallic atom and gives rise to interference effects that produce different Fano features. The inclusion of the U term opens a gap between the d states and changes the conductance and spin-filtering behavior qualitatively in some of the molecules. We explain the origin of the quantum interference effects found as due to the symmetry-dependent coupling between the d states and other molecular orbitals and propose the use of these systems as nanoscale chemical sensors. We also demonstrate that an adequate treatment of strong correlations is really necessary to correctly describe the transport properties of metalloporphyrins and similar molecular magnets.
Collapse
Affiliation(s)
- R Ferradás
- Departamento de Física, Universidad de Oviedo, E-33007 Oviedo, Spain
| | | | | |
Collapse
|
21
|
Elenewski JE, Hackett JC. Cytochrome P450 compound I in the plane wave pseudopotential framework: GGA electronic and geometric structure of thiolate-ligated iron(IV)-oxo porphyrin. J Comput Chem 2013; 34:1647-60. [PMID: 23670855 PMCID: PMC3711018 DOI: 10.1002/jcc.23311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 03/18/2013] [Accepted: 04/07/2013] [Indexed: 11/11/2022]
Abstract
The cytochromes P450 constitute a ubiquitous family of metalloenzymes, catalyzing manifold reactions of biological and synthetic importance via a thiolate-ligated iron-oxo (IV) porphyrin radical species denoted compound I (Cpd I). Experimental investigations have implicated this intermediate in a broad spectrum of biophysically interesting phenomena, further augmenting the importance of a Cpd I model system. Ab initio molecular dynamics, including Car-Parrinello and path integral methods, conjoin electronic structure theory with finite temperature simulation, affording tools most valuable to approach such enzymes. These methods are typically driven by density functional theory (DFT) in a plane-wave pseudopotential framework; however, existing studies of Cpd I have been restricted to localized Gaussian basis sets. The appropriate choice of density functional and pseudopotential for such simulations is accordingly not obvious. To remedy this situation, a systematic benchmarking of thiolate-ligated Cpd I is performed using several generalized-gradient approximation (GGA) functionals in the Martins-Troullier and Vanderbilt ultrasoft pseudopotential schemes. The resultant electronic and structural parameters are compared to localized-basis DFT calculations using GGA and hybrid density functionals. The merits and demerits of each scheme are presented in the context of reproducing existing experimental and theoretical results for Cpd I.
Collapse
Affiliation(s)
- Justin E. Elenewski
- Goodwin Research Laboratory, Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23219-1540
| | - John C Hackett
- Goodwin Research Laboratory, Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23219-1540
| |
Collapse
|
22
|
Hermanns CF, Tarafder K, Bernien M, Krüger A, Chang YM, Oppeneer PM, Kuch W. Magnetic coupling of porphyrin molecules through graphene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:3473-3477. [PMID: 23695989 DOI: 10.1002/adma.201205275] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/11/2013] [Indexed: 06/02/2023]
Abstract
X-ray magnetic circular dichroism (XMCD) measurements and density functional theory (DFT)+U calculations reveal an unexpected antiferromagnetic coupling between physisorbed paramagnetic Co-porphyrin molecules and a Ni surface, separated by a graphene layer. A positive magnetization at the Ni substrate atoms is mediated by graphene and induces a negative one at the Co site, despite only a very small overlap between macrocyclic π and graphene pz -orbitals.
Collapse
Affiliation(s)
- Christian F Hermanns
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhou J, Sun Q. Absorption induced modulation of magnetism in two-dimensional metal-phthalocyanine porous sheets. J Chem Phys 2013; 138:204706. [DOI: 10.1063/1.4807016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Elenewski JE, Hackett JC. A GGA+U approach to effective electronic correlations in thiolate-ligated iron-oxo (IV) porphyrin. J Chem Phys 2013; 137:124311. [PMID: 23020335 DOI: 10.1063/1.4755290] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
High-valent oxo-metal complexes exhibit correlated electronic behavior on dense, low-lying electronic state manifolds, presenting challenging systems for electronic structure methods. Among these species, the iron-oxo (IV) porphyrin denoted Compound I occupies a privileged position, serving a broad spectrum of catalytic roles. The most reactive members of this family bear a thiolate axial ligand, exhibiting high activity toward molecular oxygen activation and substrate oxidation. The default approach to such systems has entailed the use of hybrid density functionals or multi-configurational/multireference methods to treat electronic correlation. An alternative approach is presented based on the GGA+U approximation to density functional theory, in which a generalized gradient approximation (GGA) functional is supplemented with a localization correction to treat on-site correlation as inspired by the Hubbard model. The electronic structure of thiolate-ligated iron-oxo (IV) porphyrin and corresponding Coulomb repulsion U are determined both empirically and self-consistently, yielding spin-distributions, state level splittings, and electronic densities of states consistent with prior hybrid functional calculations. Comparison of this detailed electronic structure with model Hamiltonian calculations suggests that the localized 3d iron moments induce correlation in the surrounding electron gas, strengthening local moment formation. This behavior is analogous to strongly correlated electronic systems such as Mott insulators, in which the GGA+U scheme serves as an effective single-particle representation for the full, correlated many-body problem.
Collapse
Affiliation(s)
- Justin E Elenewski
- Institute for Structural Biology and Drug Discovery and Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, Virginia 23219, USA
| | | |
Collapse
|
25
|
  A, Castellanos-Gomez A, van Wees BJ. Band Gap Opening of Graphene by Noncovalent π-π Interaction with Porphyrins. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/graphene.2013.23015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Zhou J, Wang Q, Sun Q, Kawazoe Y, Jena P. Strain-Induced Spin Crossover in Phthalocyanine-Based Organometallic Sheets. J Phys Chem Lett 2012; 3:3109-14. [PMID: 26296014 DOI: 10.1021/jz301303t] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Motivated by the recent success in synthesizing two-dimensional Fe-phthalocyanine (poly-FePc) porous sheets, we studied strain-induced spin crossover in poly-TMPc (TM = Mn, Fe, Co, and Ni) systems by using first-principle calculations based on density functional theory. A small amount of biaxial tensile strain is found to not only significantly enhance the magnetic moment of the central TM atoms by 2 μB when the strain reaches a critical value, but also the systems undergo low-spin (LS) to high-spin (HS) transition. These systems, however, show different response to strain, namely, poly-FePc sheet becomes ferromagnetic (FM) while poly-MnPc and poly-NiPc sheets become antiferromagnetic (AFM). Poly-CoPc, on the other hand, remains AFM. These predicted results can be observed in suspended poly-TMPc sheets by using scanning tunneling microscope (STM) tips to manipulate strain.
Collapse
Affiliation(s)
- Jian Zhou
- †Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Qian Wang
- ‡Center for Applied Physics and Technology, Peking University, Beijing 100871, China
| | - Qiang Sun
- †Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
- §Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Yoshiyuki Kawazoe
- ∥Institute for Material Research, Tohoku University, Sendai, 980-8577, Japan
| | - Puru Jena
- §Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
27
|
Ali ME, Sanyal B, Oppeneer PM. Electronic structure, spin-states, and spin-crossover reaction of heme-related Fe-porphyrins: a theoretical perspective. J Phys Chem B 2012; 116:5849-59. [PMID: 22512398 DOI: 10.1021/jp3021563] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electronic structures, spin-states, and geometrical parameters of tetra-, penta-, and hexa-coordinated iron-porphyrins are investigated applying density functional theory (DFT) based calculations, utilizing the plane-wave pseudopotential as well as localized basis set approaches. The splitting of the spin multiplet energies are investigated applying various functionals including recently developed hybrid meta-GGA (M06 family) functionals. Almost all of the hybrid functionals accurately reproduce the experimental ground state spins of the investigated Fe-porphyrins. However, the energetic ordering of the spin-states and the energies between them are still an issue. The widely used B3LYP provides consistent results for all chosen systems. The GGA+U functionals are found to be equally competent. After assessing the performance of various functionals in spin-state calculations, the potential energy surfaces of the oxygen binding process by heme is investigated. This reveals a "double spin-crossover" feature for the lowest energy reaction path that is consistent with previous CASPT2 calculations but predicting a lowest energy singlet state. The calculations have hence captured the spin-crossover as well as spin-flip processes. These are driven by the intra-atomic orbital polarization on the central metal atom due to the atomic and orbitals rearrangements. The nature of the chemical bonding and a molecular orbital analysis are also performed for the geometrically simple but electronic structurally complicated system tetra-coordinated planar Fe porphyrin in comparison to the penta-coordinated systems. This analysis explains the observed paradoxical appearance of certain peaks in the local density of states (DOS).
Collapse
Affiliation(s)
- Md Ehesan Ali
- Centre for Theoretical Chemistry, Ruhr-Universität, D-44780 Bochum, Germany.
| | | | | |
Collapse
|
28
|
Kulik HJ, Marzari N. Accurate potential energy surfaces with a DFT+U(R) approach. J Chem Phys 2012; 135:194105. [PMID: 22112064 DOI: 10.1063/1.3660353] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We introduce an improvement to the Hubbard U augmented density functional approach known as DFT+U that incorporates variations in the value of self-consistently calculated, linear-response U with changes in geometry. This approach overcomes the one major shortcoming of previous DFT+U studies, i.e., the use of an averaged Hubbard U when comparing energies for different points along a potential energy surface is no longer required. While DFT+U is quite successful at providing accurate descriptions of localized electrons (e.g., d or f) by correcting self-interaction errors of standard exchange correlation functionals, we show several diatomic molecule examples where this position-dependent DFT+U(R) provides a significant two- to four-fold improvement over DFT+U predictions, when compared to accurate correlated quantum chemistry and experimental references. DFT+U(R) reduces errors in binding energies, frequencies, and equilibrium bond lengths by applying the linear-response, position-dependent U(R) at each configuration considered. This extension is most relevant where variations in U are large across the points being compared, as is the case with covalent diatomic molecules such as transition-metal oxides. We thus provide a tool for deciding whether a standard DFT+U approach is sufficient by determining the strength of the dependence of U on changes in coordinates. We also apply this approach to larger systems with greater degrees of freedom and demonstrate how DFT+U(R) may be applied automatically in relaxations, transition-state finding methods, and dynamics.
Collapse
Affiliation(s)
- Heather J Kulik
- Department of Chemistry, Stanford University, Stanford, California 94305, USA.
| | | |
Collapse
|
29
|
Wäckerlin C, Tarafder K, Siewert D, Girovsky J, Hählen T, Iacovita C, Kleibert A, Nolting F, Jung TA, Oppeneer PM, Ballav N. On-surface coordination chemistry of planar molecular spin systems: novel magnetochemical effects induced by axial ligands. Chem Sci 2012. [DOI: 10.1039/c2sc20828h] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
Bhandary S, Ghosh S, Herper H, Wende H, Eriksson O, Sanyal B. Graphene as a reversible spin manipulator of molecular magnets. PHYSICAL REVIEW LETTERS 2011; 107:257202. [PMID: 22243106 DOI: 10.1103/physrevlett.107.257202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 08/31/2011] [Indexed: 05/31/2023]
Abstract
One of the primary objectives in molecular nanospintronics is to manipulate the spin states of organic molecules with a d-electron center, by suitable external means. In this Letter, we demonstrate by first principles density functional calculations, as well as second order perturbation theory, that a strain induced change of the spin state, from S=1→S=2, takes place for an iron porphyrin (FeP) molecule deposited at a divacancy site in a graphene lattice. The process is reversible in the sense that the application of tensile or compressive strains in the graphene lattice can stabilize FeP in different spin states, each with a unique saturation moment and easy axis orientation. The effect is brought about by a change in Fe-N bond length in FeP, which influences the molecular level diagram as well as the interaction between the C atoms of the graphene layer and the molecular orbitals of FeP.
Collapse
Affiliation(s)
- Sumanta Bhandary
- Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
31
|
Di Santo G, Blankenburg S, Castellarin-Cudia C, Fanetti M, Borghetti P, Sangaletti L, Floreano L, Verdini A, Magnano E, Bondino F, Pignedoli CA, Nguyen MT, Gaspari R, Passerone D, Goldoni A. Supramolecular engineering through temperature-induced chemical modification of 2H-tetraphenylporphyrin on Ag(111): flat phenyl conformation and possible dehydrogenation reactions. Chemistry 2011. [PMID: 22113855 DOI: 10.1021/jp111151n] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Scratching the surface: Formation of a monolayer of 2H-tetraphenylporphyrins (2H-TPP) on Ag(111), either by sublimation of a multilayer in the range 525-600 K or by annealing (at the same temperature) a monolayer deposited at room temperature, induces a chemical modification of the molecules. Rotation of the phenyl rings into a flat conformation is observed and tentatively explained, by using DFT calculations, as a peculiar reaction due to molecular dehydrogenation.
Collapse
Affiliation(s)
- Giovanni Di Santo
- INSTM-Micro & Nano-Carbon Laboratory, Sincrotrone Trieste S.C.p.A. s.s.14 km. 163.5, 34149 Trieste, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhou J, Sun Q. Magnetism of Phthalocyanine-Based Organometallic Single Porous Sheet. J Am Chem Soc 2011; 133:15113-9. [DOI: 10.1021/ja204990j] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jian Zhou
- Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871, China
| | - Qiang Sun
- Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871, China
- Center for Applied Physics and Technology, Peking University, Beijing 100871, China
| |
Collapse
|
33
|
Kulik HJ, Marzari N. Transition-metal dioxides: A case for the intersite term in Hubbard-model functionals. J Chem Phys 2011; 134:094103. [DOI: 10.1063/1.3559452] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
34
|
Brena B, Puglia C, de Simone M, Coreno M, Tarafder K, Feyer V, Banerjee R, Göthelid E, Sanyal B, Oppeneer PM, Eriksson O. Valence-band electronic structure of iron phthalocyanine: An experimental and theoretical photoelectron spectroscopy study. J Chem Phys 2011; 134:074312. [DOI: 10.1063/1.3554212] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
Fry NL, Zhao XP, Mascharak PK. Density functional theory studies on a designed photoactive {FeNO}6 nitrosyl and the corresponding photoinactive {FeNO}7 species: Insight into the origin of NO photolability. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2010.12.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Leung K, Nielsen IMB, Sai N, Medforth C, Shelnutt JA. Cobalt-porphyrin catalyzed electrochemical reduction of carbon dioxide in water. 2. Mechanism from first principles. J Phys Chem A 2011; 114:10174-84. [PMID: 20726563 DOI: 10.1021/jp1012335] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We apply first principles computational techniques to analyze the two-electron, multistep, electrochemical reduction of CO(2) to CO in water using cobalt porphyrin as a catalyst. Density functional theory calculations with hybrid functionals and dielectric continuum solvation are used to determine the steps at which electrons are added. This information is corroborated with ab initio molecular dynamics simulations in an explicit aqueous environment which reveal the critical role of water in stabilizing a key intermediate formed by CO(2) bound to cobalt. By use of potential of mean force calculations, the intermediate is found to spontaneously accept a proton to form a carboxylate acid group at pH < 9.0, and the subsequent cleavage of a C-OH bond to form CO is exothermic and associated with a small free energy barrier. These predictions suggest that the proposed reaction mechanism is viable if electron transfer to the catalyst is sufficiently fast. The variation in cobalt ion charge and spin states during bond breaking, DFT+U treatment of cobalt 3d orbitals, and the need for computing electrochemical potentials are emphasized.
Collapse
Affiliation(s)
- Kevin Leung
- MS 1415, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | | | | | | | | |
Collapse
|
37
|
Sarkar S, Tarafder K, Oppeneer PM, Saha-Dasgupta T. Spin-crossover in cyanide-based bimetallic coordination polymers—insight from first-principles calculations. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11679g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Jiao D, Leung K, Rempe SB, Nenoff TM. First Principles Calculations of Atomic Nickel Redox Potentials and Dimerization Free Energies: A Study of Metal Nanoparticle Growth. J Chem Theory Comput 2010; 7:485-95. [DOI: 10.1021/ct100431m] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dian Jiao
- Nanobiology Department, MS 0895, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States, and Surface and Interface Sciences Department, MS 1415, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Kevin Leung
- Nanobiology Department, MS 0895, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States, and Surface and Interface Sciences Department, MS 1415, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Susan B. Rempe
- Nanobiology Department, MS 0895, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States, and Surface and Interface Sciences Department, MS 1415, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Tina M. Nenoff
- Nanobiology Department, MS 0895, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States, and Surface and Interface Sciences Department, MS 1415, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
39
|
Panchmatia PM, Ali ME, Sanyal B, Oppeneer PM. Halide Ligated Iron Porphines: A DFT+U and UB3LYP Study. J Phys Chem A 2010; 114:13381-7. [DOI: 10.1021/jp106358m] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pooja M. Panchmatia
- Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala, Sweden, Department of Chemistry, University of Bath, Bath, BA2 7AY, U.K., and Theoretische Chemie, Ruhr-Universität, Bochum, D-44780, Bochum, Germany
| | - Md. Ehesan Ali
- Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala, Sweden, Department of Chemistry, University of Bath, Bath, BA2 7AY, U.K., and Theoretische Chemie, Ruhr-Universität, Bochum, D-44780, Bochum, Germany
| | - Biplab Sanyal
- Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala, Sweden, Department of Chemistry, University of Bath, Bath, BA2 7AY, U.K., and Theoretische Chemie, Ruhr-Universität, Bochum, D-44780, Bochum, Germany
| | - Peter M. Oppeneer
- Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala, Sweden, Department of Chemistry, University of Bath, Bath, BA2 7AY, U.K., and Theoretische Chemie, Ruhr-Universität, Bochum, D-44780, Bochum, Germany
| |
Collapse
|
40
|
Bhattacharjee S, Brena B, Banerjee R, Wende H, Eriksson O, Sanyal B. Electronic structure of Co-phthalocyanine calculated by GGA+U and hybrid functional methods. Chem Phys 2010. [DOI: 10.1016/j.chemphys.2010.08.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Rose MJ, Betterley NM, Oliver AG, Mascharak PK. Binding of Nitric Oxide to a Synthetic Model of Iron-Containing Nitrile Hydratase (Fe-NHase) and Its Photorelease: Relevance to Photoregulation of Fe-NHase by NO. Inorg Chem 2010; 49:1854-64. [DOI: 10.1021/ic902220a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Michael J. Rose
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064
| | - Nolan M. Betterley
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064
| | - Allen G. Oliver
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064
| | - Pradip K. Mascharak
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064
| |
Collapse
|
42
|
Bernien M, Miguel J, Weis C, Ali ME, Kurde J, Krumme B, Panchmatia PM, Sanyal B, Piantek M, Srivastava P, Baberschke K, Oppeneer PM, Eriksson O, Kuch W, Wende H. Tailoring the nature of magnetic coupling of Fe-porphyrin molecules to ferromagnetic substrates. PHYSICAL REVIEW LETTERS 2009; 102:047202. [PMID: 19257470 DOI: 10.1103/physrevlett.102.047202] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Indexed: 05/25/2023]
Abstract
We demonstrate that an antiferromagnetic coupling between paramagnetic Fe-porphyrin molecules and ultrathin Co and Ni magnetic films on Cu(100) substrates can be established by an intermediate layer of atomic oxygen. The coupling energies have been determined from the temperature dependence of x-ray magnetic circular dichroism measurements. By density functional theory+U calculations the coupling mechanism is shown to be superexchange between the Fe center of the molecules and Co surface-atoms, mediated by oxygen.
Collapse
Affiliation(s)
- M Bernien
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|