1
|
Palmer MH, Ridley T, Vrønning Hoffmann S, Jones NC, Coreno M, de Simone M, Grazioli C, Zhang T, Biczysko M, Baiardi A, Peterson KA. Combined theoretical and experimental study of the valence, Rydberg and ionic states of fluorobenzene. J Chem Phys 2016; 144:204305. [PMID: 27250304 DOI: 10.1063/1.4949548] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
New photoelectron spectra (PES) and ultra violet (UV) and vacuum UV (VUV) absorption spectra of fluorobenzene recorded at higher resolution than previously, have been combined with mass-resolved (2 + 1) and (3 + 1) resonance enhanced multiphoton ionization (REMPI) spectra; this has led to the identification of numerous Rydberg states. The PES have been compared with earlier mass-analyzed threshold ionization and photoinduced Rydberg ionization (PIRI) spectra to give an overall picture of the ionic state sequence. The analysis of these spectra using both equations of motion with coupled cluster singles and doubles (EOM-CCSD) configuration interaction and time dependent density functional theory (TDDFT) calculations have been combined with vibrational analysis of both the hot and cold bands of the spectra, in considerable detail. The results extend several earlier studies on the vibronic coupling leading to conical intersections between the X(2)B1 and A(2)A2 states, and a further trio (B, C, and D) of states. The conical intersection of the X and A states has been explicitly identified, and its structure and energetics evaluated. The energy sequence of the last group is only acceptable to the present study if given as B(2)B2<C(2)B1<D(2)A1, a conclusion which is in agreement with most previous EOM-CCSD and other calculations. However, this symmetry ordering of the B and C states forces reconsideration of the nature of the PIRI spectrum. The coupling between these two states is induced by the a2 modes, ν12 and ν14 and we propose that the 14(1) band is observed in the B(2)B2 band in the PES for the first time, because of the improved resolution. This same assignment is given to the lowest energy band in the PIRI spectrum which was previously assigned as the origin band and further conclude that the entire PIRI spectrum is induced by ν12 and ν14. The relative intensities of the various Rydberg state peaks in the VUV absorption and REMPI spectra of fluorobenzene are very similar to those observed in the equivalent spectra of benzene.
Collapse
Affiliation(s)
- Michael H Palmer
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, Scotland EH9 3FJ, United Kingdom
| | - Trevor Ridley
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, Scotland EH9 3FJ, United Kingdom
| | - Søren Vrønning Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Marcello Coreno
- CNR-ISM, Basovizza Area Science Park, 1-34149 Trieste, Italy
| | | | | | - Teng Zhang
- Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
| | - Malgorzata Biczysko
- International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Alberto Baiardi
- Scuola Normale Superiore, Piazza Cavalieri 7, 56126 Pisa, Italy
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, USA
| |
Collapse
|
2
|
Kim K, Johnson AM, Powell AL, Mitchell DG, Sevy ET. High resolution IR diode laser study of collisional energy transfer between highly vibrationally excited monofluorobenzene and CO2: the effect of donor fluorination on strong collision energy transfer. J Chem Phys 2014; 141:234306. [PMID: 25527934 DOI: 10.1063/1.4903252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Collisional energy transfer between vibrational ground state CO2 and highly vibrationally excited monofluorobenzene (MFB) was studied using narrow bandwidth (0.0003 cm(-1)) IR diode laser absorption spectroscopy. Highly vibrationally excited MFB with E' = ∼41,000 cm(-1) was prepared by 248 nm UV excitation followed by rapid radiationless internal conversion to the electronic ground state (S1→S0*). The amount of vibrational energy transferred from hot MFB into rotations and translations of CO2 via collisions was measured by probing the scattered CO2 using the IR diode laser. The absolute state specific energy transfer rate constants and scattering probabilities for single collisions between hot MFB and CO2 were measured and used to determine the energy transfer probability distribution function, P(E,E'), in the large ΔE region. P(E,E') was then fit to a bi-exponential function and extrapolated to the low ΔE region. P(E,E') and the biexponential fit data were used to determine the partitioning between weak and strong collisions as well as investigate molecular properties responsible for large collisional energy transfer events. Fermi's Golden rule was used to model the shape of P(E,E') and identify which donor vibrational motions are primarily responsible for energy transfer. In general, the results suggest that low-frequency MFB vibrational modes are primarily responsible for strong collisions, and govern the shape and magnitude of P(E,E'). Where deviations from this general trend occur, vibrational modes with large negative anharmonicity constants are more efficient energy gateways than modes with similar frequency, while vibrational modes with large positive anharmonicity constants are less efficient at energy transfer than modes of similar frequency.
Collapse
Affiliation(s)
- Kilyoung Kim
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | - Alan M Johnson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | - Amber L Powell
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | - Deborah G Mitchell
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | - Eric T Sevy
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| |
Collapse
|