1
|
van Stokkum IH, Müller MG, Weißenborn J, Weigand S, Snellenburg JJ, Holzwarth AR. Energy transfer and trapping in photosystem I with and without chlorophyll- f. iScience 2023; 26:107650. [PMID: 37680463 PMCID: PMC10480676 DOI: 10.1016/j.isci.2023.107650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/14/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
We establish a general kinetic scheme for energy transfer and trapping in the photosystem I (PSI) of cyanobacteria grown under white light (WL) or far-red light (FRL) conditions. With the help of simultaneous target analysis of all emission and transient absorption datasets measured in five cyanobacterial strains, we resolved the spectral and kinetic properties of the different species present in PSI. WL-PSI can be described by Bulk Chl a, two Red Chl a, and a reaction center compartment (WL-RC). The FRL-PSI contains two additional Chl f compartments. The lowest excited state of the FRL-RC is downshifted by ≈ 29 nm. The rate of charge separation drops from ≈900 ns-1 in WL-RC to ≈300 ns-1 in FRL-RC. The delayed trapping in the FRL-PSI (≈130 ps) is explained by uphill energy transfer from the Chl f compartments with Gibbs free energies of ≈kBT below that of the FRL-RC.
Collapse
Affiliation(s)
- Ivo H.M. van Stokkum
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, the Netherlands
| | - Marc G. Müller
- Max-Planck-Institut für chemische Energiekonversion, 45470 Mülheim a.d. Ruhr, Germany
| | - Jörn Weißenborn
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, the Netherlands
| | - Sebastian Weigand
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, the Netherlands
| | - Joris J. Snellenburg
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, the Netherlands
| | - Alfred R. Holzwarth
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, the Netherlands
- Max-Planck-Institut für chemische Energiekonversion, 45470 Mülheim a.d. Ruhr, Germany
| |
Collapse
|
2
|
Harvesting far-red light: Functional integration of chlorophyll f into Photosystem I complexes of Synechococcus sp. PCC 7002. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148206. [DOI: 10.1016/j.bbabio.2020.148206] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/01/2020] [Accepted: 04/14/2020] [Indexed: 11/18/2022]
|
3
|
Zamzam N, Kaucikas M, Nürnberg DJ, Rutherford AW, van Thor JJ. Femtosecond infrared spectroscopy of chlorophyll f-containing photosystem I. Phys Chem Chem Phys 2019; 21:1224-1234. [DOI: 10.1039/c8cp05627g] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Femtosecond time resolved infrared spectroscopy of far-red light grown photosystem I shows chlorophyll f contributions in light harvesting and charge separation.
Collapse
Affiliation(s)
- Noura Zamzam
- Department of Life Sciences
- Imperial College London
- London
- UK
| | | | | | | | | |
Collapse
|
4
|
Giera W, Szewczyk S, McConnell MD, Redding KE, van Grondelle R, Gibasiewicz K. Uphill energy transfer in photosystem I from Chlamydomonas reinhardtii. Time-resolved fluorescence measurements at 77 K. PHOTOSYNTHESIS RESEARCH 2018; 137:321-335. [PMID: 29619738 DOI: 10.1007/s11120-018-0506-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Energetic properties of chlorophylls in photosynthetic complexes are strongly modulated by their interaction with the protein matrix and by inter-pigment coupling. This spectral tuning is especially striking in photosystem I (PSI) complexes that contain low-energy chlorophylls emitting above 700 nm. Such low-energy chlorophylls have been observed in cyanobacterial PSI, algal and plant PSI-LHCI complexes, and individual light-harvesting complex I (LHCI) proteins. However, there has been no direct evidence of their presence in algal PSI core complexes lacking LHCI. In order to determine the lowest-energy states of chlorophylls and their dynamics in algal PSI antenna systems, we performed time-resolved fluorescence measurements at 77 K for PSI core and PSI-LHCI complexes isolated from the green alga Chlamydomonas reinhardtii. The pool of low-energy chlorophylls observed in PSI cores is generally smaller and less red-shifted than that observed in PSI-LHCI complexes. Excitation energy equilibration between bulk and low-energy chlorophylls in the PSI-LHCI complexes at 77 K leads to population of excited states that are less red-shifted (by ~ 12 nm) than at room temperature. On the other hand, analysis of the detection wavelength dependence of the effective trapping time of bulk excitations in the PSI core at 77 K provided evidence for an energy threshold at ~ 675 nm, above which trapping slows down. Based on these observations, we postulate that excitation energy transfer from bulk to low-energy chlorophylls and from bulk to reaction center chlorophylls are thermally activated uphill processes that likely occur via higher excitonic states of energy accepting chlorophylls.
Collapse
Affiliation(s)
- Wojciech Giera
- Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614, Poznań, Poland.
| | - Sebastian Szewczyk
- Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614, Poznań, Poland
| | - Michael D McConnell
- Department of Chemistry and Biochemistry, and Center for Bioenergy and Photosynthesis, Arizona State University, 1711 S. Rural Rd, Box 871604, Tempe, AZ, 85287-1604, USA
| | - Kevin E Redding
- Department of Chemistry and Biochemistry, and Center for Bioenergy and Photosynthesis, Arizona State University, 1711 S. Rural Rd, Box 871604, Tempe, AZ, 85287-1604, USA
| | - Rienk van Grondelle
- Department of Physics and Astronomy, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Krzysztof Gibasiewicz
- Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614, Poznań, Poland
| |
Collapse
|
5
|
Mutations in algal and cyanobacterial Photosystem I that independently affect the yield of initial charge separation in the two electron transfer cofactor branches. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:42-55. [DOI: 10.1016/j.bbabio.2017.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 01/02/2023]
|
6
|
Kaucikas M, Nürnberg D, Dorlhiac G, Rutherford AW, van Thor JJ. Femtosecond Visible Transient Absorption Spectroscopy of Chlorophyll f-Containing Photosystem I. Biophys J 2017; 112:234-249. [PMID: 28122212 PMCID: PMC5266252 DOI: 10.1016/j.bpj.2016.12.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/02/2016] [Accepted: 12/01/2016] [Indexed: 01/09/2023] Open
Abstract
Photosystem I (PSI) from Chroococcidiopsis thermalis PCC 7203 grown under far-red light (FRL; >725 nm) contains both chlorophyll a and a small proportion of chlorophyll f. Here, we investigated excitation energy transfer and charge separation using this FRL-grown form of PSI (FRL-PSI). We compared femtosecond transient visible absorption changes of normal, white-light (WL)-grown PSI (WL-PSI) with those of FRL-PSI using excitation at 670 nm, 700 nm, and (in the case of FRL-PSI) 740 nm. The possibility that chlorophyll f participates in energy transfer or charge separation is discussed on the basis of spectral assignments. With selective pumping of chlorophyll f at 740 nm, we observe a final ∼150 ps decay assigned to trapping by charge separation, and the amplitude of the resulting P700+•A1-• charge-separated state indicates that the yield is directly comparable to that of WL-PSI. The kinetics shows a rapid 2 ps time constant for almost complete transfer to chlorophyll f if chlorophyll a is pumped with a wavelength of 670 nm or 700 nm. Although the physical role of chlorophyll f is best supported as a low-energy radiative trap, the physical location should be close to or potentially within the charge-separating pigments to allow efficient transfer for charge separation on the 150 ps timescale. Target models can be developed that include a branching in the formation of the charge separation for either WL-PSI or FRL-PSI.
Collapse
Affiliation(s)
- Marius Kaucikas
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Dennis Nürnberg
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Gabriel Dorlhiac
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Jasper J. van Thor
- Department of Life Sciences, Imperial College London, London, United Kingdom,Corresponding author
| |
Collapse
|
7
|
Slavov C, Reus M, Holzwarth AR. Two different mechanisms cooperate in the desiccation-induced excited state quenching in Parmelia lichen. J Phys Chem B 2013; 117:11326-36. [PMID: 23841476 DOI: 10.1021/jp402881f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The highly efficient desiccation-induced quenching in the poikilohydric lichen Parmelia sulcata has been studied by ultrafast fluorescence spectroscopy at room temperature (r.t.) and cryogenic temperatures in order to elucidate the quenching mechanism(s) and kinetic reaction models. Analysis of the r.t. data by kinetic target analysis reveals that two different quenching mechanisms contribute to the protection of photosystem II (PS II). The first mechanism is a direct quenching of the PS II antenna and is related to the characteristic F740 nm fluorescence band. Based on the temperature dependence of its spectra and the kinetics, this mechanism is proposed to reflect the formation of a fluorescent (F740) chlorophyll-chlorophyll charge-transfer state. It is discussed in relation to a similar fluorescence band and quenching mechanism observed in light-induced nonphotochemical quenching in higher plants. The second and more efficient quenching process (providing more than 70% of the total PS II quenching) is shown to involve an efficient spillover (energy transfer) from PS II to PS I which can be prevented by a short glutaraldehyde treatment. Desiccation causes a thylakoid-membrane rearrangement which brings into direct contact the PS II and PS I units. The energy transferred to PS I in the spillover process is then quenched highly efficiently in PS I due to the formation of a long-lived P700(+) state in the dried state in the light. As a consequence, both PS II and PS I are protected very efficiently against photodestruction. This dual quenching mechanism is supported by the low temperature kinetics data.
Collapse
Affiliation(s)
- Chavdar Slavov
- Max Planck Institute for Chemical Energy Conversion , D-45470 Mülheim a.d. Ruhr, Germany
| | | | | |
Collapse
|
8
|
Holzwarth AR, Lenk D, Jahns P. On the analysis of non-photochemical chlorophyll fluorescence quenching curves: I. Theoretical considerations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:786-92. [PMID: 23458431 DOI: 10.1016/j.bbabio.2013.02.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 02/11/2013] [Accepted: 02/16/2013] [Indexed: 10/27/2022]
Abstract
Non-photochemical quenching (NPQ) protects photosynthetic organisms against photodamage by high light. One of the key measuring parameters for characterizing NPQ is the high-light induced decrease in chlorophyll fluorescence. The originally measured data are maximal fluorescence (Fm') signals as a function of actinic illumination time (Fm'(t)). Usually these original data are converted into the so-called Stern-Volmer quenching function, NPQSV(t), which is then analyzed and interpreted in terms of various NPQ mechanisms and kinetics. However, the interpretation of this analysis essentially depends on the assumption that NPQ follows indeed a Stern-Volmer relationship. Here, we question this commonly assumed relationship, which surprisingly has never been proven. We demonstrate by simulation of quenching data that particularly the conversion of time-dependent quenching curves like Fm'(t) into NPQSV(t) is (mathematically) not "innocent" in terms of its effects. It distorts the kinetic quenching information contained in the originally measured function Fm'(t), leading to a severe (often sigmoidal) distortion of the time-dependence of quenching and has negative impact on the ability to uncover the underlying quenching mechanisms and their contribution to the quenching kinetics. We conclude that the commonly applied analysis of time-dependent NPQ in NPQSV(t) space should be reconsidered. First, there exists no sound theoretical basis for this common practice. Second, there occurs no loss of information whatsoever when analyzing and interpreting the originally measured Fm'(t) data directly. Consequently, the analysis of Fm'(t) data has a much higher potential to provide correct mechanistic answers when trying to correlate quenching data with other biochemical information related to quenching.
Collapse
Affiliation(s)
- Alfred R Holzwarth
- Max-Planck-Institute for Chemical Energy Conversion, Mülheim a.d. Ruhr, Germany.
| | | | | |
Collapse
|
9
|
Lambrev PH, Miloslavina Y, Jahns P, Holzwarth AR. On the relationship between non-photochemical quenching and photoprotection of Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:760-9. [PMID: 22342615 DOI: 10.1016/j.bbabio.2012.02.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 01/31/2012] [Accepted: 02/02/2012] [Indexed: 11/17/2022]
Abstract
Non-photochemical quenching (NPQ) of chlorophyll fluorescence is thought to be an indicator of an essential regulation and photoprotection mechanism against high-light stress in photosynthetic organisms. NPQ is typically characterized by modulated pulse fluorometry and it is often assumed implicitly to be a good proxy for the actual physiological photoprotection capacity of the organism. Using the results of previously published ultrafast fluorescence measurements on intact leaves of w.t. and mutants of Arabidopsis (Holzwarth et al. 2009) we have developed exact relationships for the fluorescence quenching and the corresponding Photosystem II acceptor side photoprotection effects under NPQ conditions. The approach based on the exciton-radical pair equilibrium model assumes that photodamage results from triplet states generated in the reaction center. The derived relationships allow one to distinguish and determine the individual and combined quenching as well as photoprotection contributions of each of the multiple NPQ mechanisms. Our analysis shows inter alia that quenching and photoprotection are not linearly related and that antenna detachment, which can be identified with the so-called qE mechanism, contributes largely to the measured fluorescence quenching but does not correspond to the most efficient photoprotective response. Conditions are formulated which allow simultaneously the maximal photosynthetic electron flow as well as maximal acceptor side photoprotection. It is shown that maximal photoprotection can be achieved if NPQ is regulated in such a way that PSII reaction centers are open under given light conditions. The results are of fundamental importance for a proper interpretation of the physiological relevance of fluorescence-based NPQ data.
Collapse
Affiliation(s)
- Petar H Lambrev
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstr. 34-36, 45470 Mülheim a.d. Ruhr, Germany
| | | | | | | |
Collapse
|
10
|
Di Donato M, Stahl AD, van Stokkum IHM, van Grondelle R, Groot ML. Cofactors Involved in Light-Driven Charge Separation in Photosystem I Identified by Subpicosecond Infrared Spectroscopy. Biochemistry 2010; 50:480-90. [DOI: 10.1021/bi101565w] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mariangela Di Donato
- Faculty of Sciences, Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
| | - Andreas D. Stahl
- Faculty of Sciences, Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
| | - Ivo H. M. van Stokkum
- Faculty of Sciences, Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Faculty of Sciences, Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
| | - Marie-Louise Groot
- Faculty of Sciences, Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
11
|
El-Mohsnawy E, Kopczak MJ, Schlodder E, Nowaczyk M, Meyer HE, Warscheid B, Karapetyan NV, Rögner M. Structure and function of intact photosystem 1 monomers from the cyanobacterium Thermosynechococcus elongatus. Biochemistry 2010; 49:4740-51. [PMID: 20359245 DOI: 10.1021/bi901807p] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Until now, the functional and structural characterization of monomeric photosystem 1 (PS1) complexes from Thermosynechococcus elongatus has been hampered by the lack of a fully intact PS1 preparation; for this reason, the three-dimensional crystal structure at 2.5 A resolution was determined with the trimeric PS1 complex [Jordan, P., et al. (2001) Nature 411 (6840), 909-917]. Here we show the possibility of isolating from this cyanobacterium the intact monomeric PS1 complex which preserves all subunits and the photochemical activity of the isolated trimeric complex. Moreover, the equilibrium between these complexes in the thylakoid membrane can be shifted by a high-salt treatment in favor of monomeric PS1 which can be quantitatively extracted below the phase transition temperature. Both monomers and trimers exhibit identical posttranslational modifications of their subunits and the same reaction centers but differ in the long-wavelength antenna chlorophylls. Their chlorophyll/P700 ratio (108 for the monomer and 112 for the trimer) is slightly higher than in the crystal structure, confirming mild preparation conditions. Interaction of antenna chlorophylls of the monomers within the trimer leads to a larger amount of long-wavelength chlorophylls, resulting in a higher photochemical activity of the trimers under red or far-red illumination. The dynamic equilibrium between monomers and trimers in the thylakoid membrane may indicate a transient monomer population in the course of biogenesis and could also be the basis for short-term adaptation of the cell to changing environmental conditions.
Collapse
|
12
|
Shibata Y, Yamagishi A, Kawamoto S, Noji T, Itoh S. Kinetically Distinct Three Red Chlorophylls in Photosystem I of Thermosynechococcus elongatus Revealed by Femtosecond Time-Resolved Fluorescence Spectroscopy at 15 K. J Phys Chem B 2010; 114:2954-63. [DOI: 10.1021/jp909583r] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yutaka Shibata
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furo-cho, Nagoya 464-8602, Japan
| | - Atsushi Yamagishi
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furo-cho, Nagoya 464-8602, Japan
| | - Shunsuke Kawamoto
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furo-cho, Nagoya 464-8602, Japan
| | - Tomoyasu Noji
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furo-cho, Nagoya 464-8602, Japan
| | - Shigeru Itoh
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furo-cho, Nagoya 464-8602, Japan
| |
Collapse
|
13
|
Effect of the P700 pre-oxidation and point mutations near A(0) on the reversibility of the primary charge separation in Photosystem I from Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1797:106-12. [PMID: 19761751 DOI: 10.1016/j.bbabio.2009.09.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 07/31/2009] [Accepted: 09/09/2009] [Indexed: 11/22/2022]
Abstract
Time-resolved fluorescence studies with a 3-ps temporal resolution were performed in order to: (1) test the recent model of the reversible primary charge separation in Photosystem I (Müller et al., 2003; Holwzwarth et al., 2005, 2006), and (2) to reconcile this model with a mechanism of excitation energy quenching by closed Photosystem I (with P700 pre-oxidized to P700+). For these purposes, we performed experiments using Photosystem I core samples isolated from Chlamydomonas reinhardtii wild type, and two mutants in which the methionine axial ligand to primary electron acceptor, A(0), has been change to either histidine or serine. The temporal evolution of fluorescence spectra was recorded for each preparation under conditions where the "primary electron donor," P700, was either neutral or chemically pre-oxidized to P700+. For all the preparations under study, and under neutral and oxidizing conditions, we observed multiexponential fluorescence decay with the major phases of approximately 7 ps and approximately 25 ps. The relative amplitudes and, to a minor extent the lifetimes, of these two phases were modulated by the redox state of P700 and by the mutations near A(0): both pre-oxidation of P700 and mutations caused slight deceleration of the excited state decay. These results are consistent with a model in which P700 is not the primary electron donor, but rather a secondary electron donor, with the primary charge separation event occurring between the accessory chlorophyll, A, and A(0). We assign the faster phase to the equilibration process between the excited state of the antenna/reaction center ensemble and the primary radical pair, and the slower phase to the secondary electron transfer reaction. The pre-oxidation of P700 shifts the equilibrium between the excited state and the primary radical pair towards the excited state. This shift is proposed to be induced by the presence of the positive charge on P700+. The same charge is proposed to be responsible for the fast A+A(0)(-)-->AA(0) charge recombination to the ground state and, in consequence, excitation quenching in closed reaction centers. Mutations of the A(0) axial ligand shift the equilibrium in the same direction as pre-oxidation of P700 due to the up-shift of the free energy level of the state A+A(0)(-).
Collapse
|