1
|
Chun SY, Shim JW, Kwak K, Cho M. Molecular Photothermal Effect on the 2D-IR Spectroscopy of Acetonitrile-Based Li-Ion Battery Electrolytes. J Phys Chem Lett 2024; 15:7302-7311. [PMID: 38984794 DOI: 10.1021/acs.jpclett.4c00522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Advancements in Li-ion battery (LIB) technology hinge on an understanding of Li-ion solvation and charge transport dynamics. Ultrafast two-dimensional infrared (2D-IR) spectroscopy has been used to investigate these dynamics in electrolytes by probing chemical exchange processes through time-dependent cross-peak analysis. However, accurate interpretation is complicated by factors such as vibrational energy transfer and molecular photothermal effect (MPTE), affecting cross-peak evolution. Pinpointing the precise origin of these cross-peaks has posed a significant challenge in time-resolved IR spectroscopic studies of LIB electrolytes. Here, we trace the origin of 2D-IR cross-peaks of LIB electrolytes utilizing acetonitrile as a solvent. Time-dependent analysis of LiSCN and CH3SCN mixtures in CD3CN revealed distinctive MPTE features. Furthermore, direct observation of intermolecular MPTE through two-color IR pump-probe spectroscopy lends support to the findings. Our results emphasize the non-negligible artifacts induced by MPTE and the necessity of considering these effects to accurately observe the ultrafast dynamics within LIB electrolytes.
Collapse
Affiliation(s)
- So Yeon Chun
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Joong Won Shim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Kyungwon Kwak
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
2
|
Zhang M, Li S, Yang H, Song G, Wu C, Li Z. Structure and Ultrafast X-ray Diffraction of the Hydrated Metaphosphate. J Phys Chem A 2024; 128:3086-3094. [PMID: 38605669 DOI: 10.1021/acs.jpca.4c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
We study the pathway of metaphosphate hydration when a metaphosphate anion is dissolved in liquid water with an explicit water model. For this purpose, we propose a sequential Monte Carlo algorithm incorporated with the ab initio quantum mechanics/molecular mechanics (QM/MM) method, which can reduce the amount of ab initio QM/MM sampling while retaining the accuracy of the simulation. We demonstrate the numerical calculation of the standard enthalpy change for the successive addition reaction PO3-·2H2O + H2O ⇌ PO3-·3H2O in the liquid phase, which helps to clarify the hydration pathway of the metaphosphate. With the obtained hydrated structure of the metaphosphate anion, we perform ab initio calculations for its relaxation dynamics upon vibrational excitation and characterize the energy transfer process in solution with simulated ultrafast X-ray diffraction signals, which can be experimentally implemented with X-ray free-electron lasers.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Sizhe Li
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hanwei Yang
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Gaoxing Song
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Chengyin Wu
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| | - Zheng Li
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| |
Collapse
|
3
|
Lim C, Jeon J, Park K, Liang C, Chae Y, Kwak K, Cho M. Revisiting Ultrafast Dynamics in Carbonate-Based Electrolytes for Li-Ion Batteries: Clarifying 2D-IR Cross-Peak Interpretation. J Phys Chem B 2023; 127:9566-9574. [PMID: 37905968 DOI: 10.1021/acs.jpcb.3c05480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Understanding chemical exchange in carbonate-based electrolytes employed in Li-ion batteries (LIBs) is crucial for elucidating ion transport mechanisms. Ultrafast two-dimensional (2D) IR spectroscopy has been widely used to investigate the solvation structure and dynamics of Li-ions in organic carbonate-based electrolytes. However, the interpretation of cross-peaks observed in picosecond carbonyl stretch 2D-IR spectra has remained contentious. These cross-peaks could arise from various phenomena, including vibrational couplings between neighboring carbonyl groups in the first solvation shell around Li-ions, vibrational excitation transfers between carbonyl groups in distinct solvation environments, and local heating effects. Therefore, it is imperative to resolve the interpretation of 2D-IR cross-peaks to avoid misinterpretations regarding ultrafast dynamics found in LIB carbonate-based electrolytes. In this study, we have taken a comprehensive investigation of carbonate-based electrolytes utilizing 2D-IR spectroscopy and molecular dynamics (MD) simulations. Through meticulous analyses and interpretations, we have identified that the cross-peaks observed in the picosecond 2D-IR spectra of LIB electrolytes predominantly arise from intermolecular vibrational excitation transfer processes between the carbonyl groups of Li-bound and free carbonate molecules. We further discuss the limitations of employing a picosecond 2D-IR spectroscopic technique to study chemical exchange and intermolecular vibrational excitation transfer processes, particularly when the effects of the molecular photothermal process cannot be ignored. Our findings shed light on the dynamics of LIB electrolytes and resolve the controversy related to 2D-IR cross-peaks. By discerning the origin of these features, we could provide valuable insights for the design and optimization of next-generation Li-ion batteries.
Collapse
Affiliation(s)
- Chaiho Lim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jonggu Jeon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
| | - Kwanghee Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Chungwen Liang
- Creyon Bio Inc., San Diego, California 92121, United States
| | - Yeongseok Chae
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Kyungwon Kwak
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
4
|
Cho M. Molecular Photothermal Effects on Time-Resolved IR Spectroscopy: Solute-Solvent Intermolecular Energy Transfer. J Phys Chem B 2023; 127:300-307. [PMID: 36576754 DOI: 10.1021/acs.jpcb.2c07043] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Time-resolved IR pump-probe (IR-PP) and two-dimensional IR (2D-IR) spectroscopy are valuable tools for studying ultrafast chemical and biological processes in solutions. However, the corresponding signals at long times are obscured by the molecular photothermal effects resulting from the heat dissipation of vibrationally photoexcited molecules to the surroundings. Recently, a phenomenology model was used to describe molecular photothermal effects on IR-PP signals and the diagonal and cross-peaks of 2D-IR spectra at long pump-probe delay times. Here, we consider the thermal diffusion equation with a time-dependent heat source term to describe the solute-solvent energy transfer process. An approximate solution to the nonhomogeneous differential equation shows that the molecular photothermal effect is determined by the mean intermolecular distance between IR-absorbing molecules. We show that the time profile of heat dissipation from a vibrationally excited molecule to the surroundings, which provides information about the mechanisms involved in the solute-solvent intermolecular energy transfer process in solutions, can be directly measured by analyzing the molecular photothermal IR-PP and 2D-IR signals. We anticipate that the present work can be used to interpret local heating-induced time-resolved IR spectroscopic signals and understand the rate of and the mechanisms involved in the conversion from high-frequency molecular vibrational energy to solvent kinetic energy in condensed phases.
Collapse
Affiliation(s)
- Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea.,Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
5
|
Cho M. Molecular photothermal effects on time-resolved IR spectroscopy. J Chem Phys 2022; 157:124201. [DOI: 10.1063/5.0108826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Time-resolved IR pump-probe (IR-PP) and two-dimensional IR (2D-IR) spectroscopy are valuable techniques for studying various ultrafast chemical and biological processes in solutions. The time-dependent changes of nonlinear IR signals reflecting fast molecular processes such as vibrational energy transfer and chemical exchange provide invaluable information on the rates and mechanisms of solvation dynamics and structural transitions of multi-species vibrationally interacting molecular systems. However, due to the intrinsic difficulties in distinguishing the contributions of molecule-specific processes to the time-resolved IR signals from those resulting from local heating, it becomes challenging to interpret time-resolved IR-PP and 2D-IR spectra exhibiting transient growing-in spectral components and cross-peaks unambiguously. Here, theoretical considerations of various effects of vibrational coupling, energy transfer, chemical exchange, the generation of hot ground states, molecular photothermal process, and their combinations on the lineshapes and time-dependent intensities of IR-PP spectra and 2D-IR diagonal and cross-peaks are presented. We anticipate that the present work will help researchers using IR pump-probe and 2D-IR techniques to distinguish local heating-induced photothermal signals from genuine nonlinear IR signals.
Collapse
Affiliation(s)
- Minhaeng Cho
- Chemistry, Korea University, Korea, Republic of (South Korea)
| |
Collapse
|
6
|
Chalyavi F, Schmitz AJ, Fetto NR, Tucker MJ, Brewer SH, Fenlon EE. Extending the vibrational lifetime of azides with heavy atoms. Phys Chem Chem Phys 2020; 22:18007-18013. [PMID: 32749405 DOI: 10.1039/d0cp02814b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of novel vibrational reporters (VRs), aka infrared (IR) probes, to study local environments and dynamic processes in biomolecules and materials continues to be an important area of research. Azides are important VRs because of their small size and large transition dipole strengths, however, their relatively short vibrational lifetimes (<2 ps) have limited their full potential. Herein we report that the vibrational lifetimes of azides can be increased by attaching them to heavy atoms and by using heavy 15N isotopes. Three group 14 atom triphenyl azides (Ph3CN3, Ph3SiN3, Ph3SnN3), and their triple-15N isotopomers, were synthesized in good yields. Tributyltin azide and its heavy isotopomer (Bu3Sn15N3) were also prepared to probe the effect of molecular scaffolding. The extinction coefficients for the natural abundance azides were determined, ranging from 900 to 1500 M-1 cm-1. The vibrational lifetimes of all azides were measured by pump-probe IR spectroscopy and each showed a major component with a short-to-moderate vibrational lifetime and a minor component with a much longer vibrational lifetime. Based on these results, the lifetime, aka the observation window, of an azide reporter can be extended from ∼2 ps to as long as ∼300 ps by a combination of isotopic labeling and heavy atom effect. 2D IR measurements of these compounds further confirmed the ability to observe these azide transitions at much longer timescales showing their utility to capture dynamic processes from tens to hundreds of picoseconds.
Collapse
Affiliation(s)
- Farzaneh Chalyavi
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Andrew J Schmitz
- Department of Chemistry, University of Nevada at Reno, Reno, NV 89557, USA.
| | - Natalie R Fetto
- Department of Chemistry, University of Nevada at Reno, Reno, NV 89557, USA.
| | - Matthew J Tucker
- Department of Chemistry, University of Nevada at Reno, Reno, NV 89557, USA.
| | - Scott H Brewer
- Department of Chemistry, Franklin & Marshall College, Lancaster, PA 17604, USA. ,
| | - Edward E Fenlon
- Department of Chemistry, Franklin & Marshall College, Lancaster, PA 17604, USA. ,
| |
Collapse
|
7
|
Kundu A, Verma PK, Cho M. Water Structure and Dynamics in the Stern Layer of Micelles: Femtosecond Mid-Infrared Pump-Probe Spectroscopy Study. J Phys Chem B 2019; 123:5238-5245. [PMID: 31145621 DOI: 10.1021/acs.jpcb.9b03183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular-level understanding of the water structure and dynamics in the Stern layer of micelles is important to elucidate the active role of water in biological processes on membrane surfaces. Micelles and reverse micelles are considered to be excellent membrane model systems. Here, to address the question of whether or not the spatial confinement effect on water in reverse micelles and nanometric water pool systems plays a role in modulating water dynamics, we consider four different aqueous micelle solutions and study the water dynamics in the Stern layer of micelles using a femtosecond mid-infrared pump-probe spectroscopy technique. Vibrational energy relaxation and rotational dynamics of the O?D stretch mode of HDO and the azido stretch mode of hydrazoic acid are critically dependent on the charge, polarity, and chemical structure of the surfactant head group. In particular, water molecules in the Stern layer of micelles, which are not in spatially confined environments, are notably different from those in bulk water. This finding clearly indicates that changes in the vibrational and rotational dynamics of water molecules, even in spatially confined systems, are mainly induced by surface effects instead of spatial confinement effects. We believe that the present experimental results are of importance for understanding water-involved biochemical processes on biological membranes.
Collapse
Affiliation(s)
- Achintya Kundu
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science (IBS) , Seoul 02841 , Republic of Korea.,Department of Chemistry , Korea University , Seoul 02841 , Republic of Korea
| | - Pramod Kumar Verma
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science (IBS) , Seoul 02841 , Republic of Korea.,Department of Chemistry , Korea University , Seoul 02841 , Republic of Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science (IBS) , Seoul 02841 , Republic of Korea.,Department of Chemistry , Korea University , Seoul 02841 , Republic of Korea
| |
Collapse
|
8
|
Kossowska D, Park K, Park JY, Lim C, Kwak K, Cho M. Rational Design of an Acetylenic Infrared Probe with Enhanced Dipole Strength and Increased Vibrational Lifetime. J Phys Chem B 2019; 123:6274-6281. [DOI: 10.1021/acs.jpcb.9b04925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Dorota Kossowska
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Kwanghee Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea
| | - Jun Young Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Chaiho Lim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Kyungwon Kwak
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
9
|
Okuda M, Ohta K, Tominaga K. Rotational Dynamics of Solutes with Multiple Single Bond Axes Studied by Infrared Pump-Probe Spectroscopy. J Phys Chem A 2018; 122:946-954. [PMID: 29278912 DOI: 10.1021/acs.jpca.7b09939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To investigate the relationship between the structural degrees of freedom around a vibrational probe and the rotational relaxation process of a solute in solution, we studied the anisotropy decays of three different N3-derivatized amino acids in primary alcohol solutions. By performing polarization-controlled IR pump-probe measurements, we reveal that the anisotropy decays of the vibrational probe molecules in 1-alcohol solutions possess two decay components, at subpicosecond and picosecond time scales. On the basis of results showing that the fast relaxation component is insensitive to the vibrational probe molecule, we suggest that the anisotropy decay of the N3 group on a subpicosecond time scale results from a local, small-amplitude fluctuation of the flexible vibrational probe, which does not depend on the details of its molecular structure. However, the slow relaxation component depends on the solute: with longer alkyl chains attached to the N3 group, the anisotropy decay of the slow component is faster. Consequently, we conclude that the slow relaxation component corresponds to the reorientational motion of the N3 group correlated with other intramolecular rotational motions (e.g., rotational motions of the neighboring alkyl chain). Our experimental results provide important insight into understanding the rotational dynamics of solutes with multiple single bond axes in solution.
Collapse
Affiliation(s)
- Masaki Okuda
- Molecular Photoscience Research Center and ‡Graduate School of Science, Kobe University , Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| | - Kaoru Ohta
- Molecular Photoscience Research Center and ‡Graduate School of Science, Kobe University , Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| | - Keisuke Tominaga
- Molecular Photoscience Research Center and ‡Graduate School of Science, Kobe University , Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| |
Collapse
|
10
|
Kundu A, Verma PK, Ha JH, Cho M. Studying Water Hydrogen-Bonding Network near the Lipid Multibilayer with Multiple IR Probes. J Phys Chem A 2017; 121:1435-1441. [DOI: 10.1021/acs.jpca.6b12152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Achintya Kundu
- Center
for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department
of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Pramod Kumar Verma
- Center
for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department
of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jeong-Hyon Ha
- Space-Time
Resolved Molecular Imaging Research Team, Korea Basic Science Institute (KBSI), Seoul 136-075, Republic of Korea
| | - Minhaeng Cho
- Center
for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department
of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
11
|
Okuda M, Ohta K, Tominaga K. Comparison of vibrational dynamics between non-ionic and ionic vibrational probes in water: Experimental study with two-dimensional infrared and infrared pump-probe spectroscopies. J Chem Phys 2016. [DOI: 10.1063/1.4962344] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Masaki Okuda
- Graduate School of Science, Kobe University, Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| | - Kaoru Ohta
- Moleuclar Photoscience Research Center, Kobe University, Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| | - Keisuke Tominaga
- Graduate School of Science, Kobe University, Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
- Moleuclar Photoscience Research Center, Kobe University, Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| |
Collapse
|
12
|
Chuntonov L. 2D-IR spectroscopy of hydrogen-bond-mediated vibrational excitation transfer. Phys Chem Chem Phys 2016; 18:13852-60. [DOI: 10.1039/c6cp01640e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Inter-molecular vibrational energy transfer in the hydrogen-bonded complexes of methyl acetate and 4-cyanophenol is studied by dual-frequency 2D-IR spectroscopy.
Collapse
Affiliation(s)
- Lev Chuntonov
- Schulich Faculty of Chemistry and Solid State Institute
- Technion – Israel Institute of Technology
- Haifa 32000
- Israel
| |
Collapse
|
13
|
Atkin JM, Sass PM, Teichen PE, Eaves JD, Raschke MB. Nanoscale probing of dynamics in local molecular environments. J Phys Chem Lett 2015; 6:4616-4621. [PMID: 26528865 DOI: 10.1021/acs.jpclett.5b02093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Vibrational spectroscopy can provide information about structure, coupling, and dynamics underlying the properties of complex molecular systems. While measurements of spectral line broadening can probe local chemical environments, the spatial averaging in conventional spectroscopies limits insight into underlying heterogeneity, in particular in disordered molecular solids. Here, using femtosecond infrared scattering scanning near-field optical microscopy (IR s-SNOM), we resolve in vibrational free-induction decay (FID) measurements a high degree of spatial heterogeneity in polytetrafluoroethylene (PTFE) as a dense molecular model system. In nanoscopic probe volumes as small as 10(3) vibrational oscillators, we approach the homogeneous response limit, with extended vibrational dephasing times of several picoseconds, that is, up to 10 times the inhomogeneous lifetime, and spatial average converging to the bulk ensemble response. We simulate the dynamics of relaxation with a finite set of local vibrational transitions subject to random modulations in frequency. The combined results suggest that the observed heterogeneity arises due to static and dynamic variations in the local molecular environment. This approach thus provides real-space and real-time visualization of the subensemble dynamics that define the properties of many functional materials.
Collapse
Affiliation(s)
- Joanna M Atkin
- Department of Physics, Department of Chemistry, and JILA, University of Colorado , Boulder, Colorado 80309, United States
- Department of Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Paul M Sass
- Department of Physics, Department of Chemistry, and JILA, University of Colorado , Boulder, Colorado 80309, United States
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - Paul E Teichen
- Department of Chemistry, University of Colorado , Boulder, Colorado 80309, United States
| | - Joel D Eaves
- Department of Chemistry, University of Colorado , Boulder, Colorado 80309, United States
| | - Markus B Raschke
- Department of Physics, Department of Chemistry, and JILA, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
14
|
Chuntonov L, Pazos IM, Ma J, Gai F. Kinetics of exchange between zero-, one-, and two-hydrogen-bonded states of methyl and ethyl acetate in methanol. J Phys Chem B 2015; 119:4512-20. [PMID: 25738661 DOI: 10.1021/acs.jpcb.5b00745] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has recently been shown that the ester carbonyl stretching vibration can be used as a sensitive probe of local electrostatic field in molecular systems. To further characterize this vibrational probe and extend its potential applications, we studied the kinetics of chemical exchange between differently hydrogen-bonded (H-bonded) ester carbonyl groups of methyl acetate (MA) and ethyl acetate (EA) in methanol. We found that, while both MA and EA can form zero, one, or two H-bonds with the solvent, the population of the 2hb state in MA is significantly smaller than that in EA. Using a combination of linear and nonlinear infrared measurements and numerical simulations, we further determined the rate constants for the exchange between these differently H-bonded states. We found that for MA the chemical exchange reaction between the two dominant states (i.e., 0hb and 1hb states) has a relaxation rate constant of 0.14 ps(-1), whereas for EA the three-state chemical exchange reaction occurs in a predominantly sequential manner with the following relaxation rate constants: 0.11 ps(-1) for exchange between 0hb and 1hb states and 0.12 ps(-1) for exchange between 1hb and 2hb states.
Collapse
Affiliation(s)
- Lev Chuntonov
- †Ultrafast Optical Processes Laboratory and ‡Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ileana M Pazos
- †Ultrafast Optical Processes Laboratory and ‡Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jianqiang Ma
- †Ultrafast Optical Processes Laboratory and ‡Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Feng Gai
- †Ultrafast Optical Processes Laboratory and ‡Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
15
|
Maj M, Ahn C, Kossowska D, Park K, Kwak K, Han H, Cho M. β-Isocyanoalanine as an IR probe: comparison of vibrational dynamics between isonitrile and nitrile-derivatized IR probes. Phys Chem Chem Phys 2015; 17:11770-8. [DOI: 10.1039/c5cp00454c] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An infrared (IR) probe based on isonitrile (NC)-derivatized alanine 1 was synthesized and the vibrational properties of its NC stretching mode were investigated using FTIR and femtosecond IR pump–probe spectroscopy.
Collapse
Affiliation(s)
- Michał Maj
- Center for Molecular Spectroscopy and Dynamics
- Institute for Basic Science (IBS)
- Seoul 136-701, Korea
- Department of Chemistry
- Korea University
| | - Changwoo Ahn
- Department of Chemistry
- Korea University
- Seoul 136-701, Korea
| | - Dorota Kossowska
- Center for Molecular Spectroscopy and Dynamics
- Institute for Basic Science (IBS)
- Seoul 136-701, Korea
- Department of Chemistry
- Korea University
| | - Kwanghee Park
- Center for Molecular Spectroscopy and Dynamics
- Institute for Basic Science (IBS)
- Seoul 136-701, Korea
- Department of Chemistry
- Korea University
| | - Kyungwon Kwak
- Department of Chemistry
- Chung-Ang University
- Seoul 156-756, Korea
| | - Hogyu Han
- Department of Chemistry
- Korea University
- Seoul 136-701, Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics
- Institute for Basic Science (IBS)
- Seoul 136-701, Korea
- Department of Chemistry
- Korea University
| |
Collapse
|
16
|
Lee C, Son H, Park S. Acid–base equilibrium dynamics in methanol and dimethyl sulfoxide probed by two-dimensional infrared spectroscopy. Phys Chem Chem Phys 2015; 17:17557-61. [DOI: 10.1039/c5cp02368h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-dimensional infrared (2DIR) spectroscopy was successfully used to investigate the acid dissociation equilibrium of HN3 in methanol (CH3OH) and dimethyl sulfoxide (DMSO).
Collapse
Affiliation(s)
- Chiho Lee
- Department of Chemistry
- Korea University
- Seoul 136-701
- Korea
| | - Hyewon Son
- Department of Chemistry
- Korea University
- Seoul 136-701
- Korea
| | - Sungnam Park
- Department of Chemistry
- Korea University
- Seoul 136-701
- Korea
- Multidimensional Spectroscopy Laboratory
| |
Collapse
|
17
|
Kwon Y, Lee C, Park S. Effect of ion–molecule interaction on fermi-resonance in acetonitrile studied by ultrafast vibrational spectroscopy. Chem Phys 2014. [DOI: 10.1016/j.chemphys.2014.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Lee J, Maj M, Kwak K, Cho M. Infrared Pump-Probe Study of Nanoconfined Water Structure in Reverse Micelle. J Phys Chem Lett 2014; 5:3404-3407. [PMID: 26278453 DOI: 10.1021/jz501737q] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The influence of nanoconfinement on water structure is studied with time- and frequency-resolved vibrational spectroscopy of hydrazoic acid (HN3) encapsulated in reverse micelle. The azido stretch mode of HN3 is found to be a promising infrared probe for studying the structure and local hydrogen-bond environment of confined and interfacial water in reverse micelle due to its narrow spectral bandwidth and large transition dipole moment. The results show a clear separation between the core and shell spectral components, making it advantageous over the previously studied infrared probes. The measured vibrational lifetimes appear to be substantially different for the interfacial and bulk-like environments but show no remarkable size dependency, which indicates that water structures around this IR probe are distinctively different in the core and shell regions. The influence of local hydrogen bond network in the first and higher solvation shells on the vibrational dynamics of HN3 is further discussed.
Collapse
Affiliation(s)
- Jooyong Lee
- †Department of Chemistry, Korea University, Seoul 136-701, Korea
| | - Michał Maj
- †Department of Chemistry, Korea University, Seoul 136-701, Korea
| | - Kyungwon Kwak
- §Department of Chemistry, Chung-Ang University, Seoul 156-756, Korea
| | - Minhaeng Cho
- †Department of Chemistry, Korea University, Seoul 136-701, Korea
- ‡Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute, Seoul 136-713, Korea
| |
Collapse
|
19
|
Czurlok D, Gleim J, Lindner J, Vöhringer P. Vibrational Energy Relaxation of Thiocyanate Ions in Liquid-to-Supercritical Light and Heavy Water. A Fermi's Golden Rule Analysis. J Phys Chem Lett 2014; 5:3373-3379. [PMID: 26278447 DOI: 10.1021/jz501710c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The vibrational relaxation dynamics following an ultrafast nitrile stretching (ν3) excitation of thiocyanate anions dissolved in light and heavy water have been studied over a wide temperature and density range corresponding to the aqueous liquid up to the supercritical phase. In both solvents, the relaxation of the ν3 = 1 state of the anion leads to a direct recovery of the vibrational ground state and involves the resonant transfer of the excess vibrational energy onto the solvent. In light water, the energy-accepting states are provided by the bending-librational combination band (νb + νL), while in heavy water, the relaxation is thermally assisted by virtual acceptor states derived from the stretching-librational/restricted translational hot band (νS - νL,T). The relaxation rate is found to strictly obey Fermi's Golden Rule when the density of resonant solvent states is estimated from the linear infrared spectra of the solute and the pure solvents.
Collapse
Affiliation(s)
- Denis Czurlok
- Lehrstuhl für Molekulare Physikalische Chemie, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität, Wegelerstraße 12, 53115 Bonn, Germany
| | - Jeannine Gleim
- Lehrstuhl für Molekulare Physikalische Chemie, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität, Wegelerstraße 12, 53115 Bonn, Germany
| | - Jörg Lindner
- Lehrstuhl für Molekulare Physikalische Chemie, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität, Wegelerstraße 12, 53115 Bonn, Germany
| | - Peter Vöhringer
- Lehrstuhl für Molekulare Physikalische Chemie, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität, Wegelerstraße 12, 53115 Bonn, Germany
| |
Collapse
|
20
|
Nguyen SC, Lomont JP, Caplins BW, Harris CB. Studying the Dynamics of Photochemical Reactions via Ultrafast Time-Resolved Infrared Spectroscopy of the Local Solvent. J Phys Chem Lett 2014; 5:2974-2978. [PMID: 26278245 DOI: 10.1021/jz501400t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Conventional ultrafast spectroscopic studies on the dynamics of chemical reactions in solution directly probe the solute undergoing the reaction. We provide an alternative method for probing reaction dynamics via monitoring of the surrounding solvent. When the reaction exchanges the energy (in form of heat) with the solvent, the absorption cross sections of the solvent's infrared bands are sensitive to the heat transfer, allowing spectral tracking of the reaction dynamics. This spectroscopic technique was demonstrated to be able to distinguish the differing photoisomerization dynamics of the trans and cis isomers of stilbene in acetonitrile solution. We highlight the potential of this spectroscopic approach for studying the dynamics of chemical reactions or other heat transfer processes when probing the solvent is more experimentally feasible than probing the solute directly.
Collapse
Affiliation(s)
- Son C Nguyen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Justin P Lomont
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Benjamin W Caplins
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Charles B Harris
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
21
|
Chuntonov L, Ma J. Quantum process tomography quantifies coherence transfer dynamics in vibrational exciton. J Phys Chem B 2013; 117:13631-8. [PMID: 24079417 DOI: 10.1021/jp4075493] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Quantum coherence has been a subject of great interest in many scientific disciplines. However, detailed characterization of the quantum coherence in molecular systems, especially its transfer and relaxation mechanisms, still remains a major challenge. The difficulties arise in part because the spectroscopic signatures of the coherence transfer are typically overwhelmed by other excitation-relaxation processes. We use quantum process tomography (QPT) via two-dimensional infrared spectroscopy to quantify the rate of the elusive coherence transfer between two vibrational exciton states. QPT retrieves the dynamics of the dissipative quantum system directly from the experimental observables. It thus serves as an experimental alternative to theoretical models of the system-bath interaction and can be used to validate these theories. Our results for coupled carbonyl groups of a diketone molecule in chloroform, used as a benchmark system, reveal the nonsecular nature of the interaction between the exciton and the Markovian bath and open the door for the systematic studies of the dissipative quantum systems dynamics in detail.
Collapse
Affiliation(s)
- Lev Chuntonov
- Ultrafast Optical Processes Laboratory, Department of Chemistry, University of Pennsylvania , Philadelphia, PA 19104, United States
| | | |
Collapse
|